Valuation Rings

Rachel Chaiser May 1, 2017

University of Puget Sound

- F field
- ${\cal G}$ totally ordered additive abelian group
- For all $a, b \in F, \nu : F \to G \cup \{\infty\}$ satisfies:
 - 1. $\nu(ab) = \nu(a) + \nu(b)$ 2. $\nu(a+b) \ge \min\{\nu(a), \nu(b)\}$
 - 3. $\nu(0) := \infty$
- If ν is surjective onto $G = \mathbb{Z}$ then ν is **discrete**

- Fix a prime $p \in \mathbb{Z}$
- Any $\frac{r}{s} \in \mathbb{Q}^*$ can be written uniquely as $\frac{r}{s} = p^k \frac{a}{b}, \ \frac{a}{b} \in \mathbb{Q}^*, \ p \nmid ab$
- Define $\nu_p : \mathbb{Q} \to \mathbb{Z} \cup \{\infty\}, \, \nu_p(\frac{r}{s}) = k$
- For example, 3-adic valuation:

-
$$\nu_3(1) = 0$$

- $\nu_3(12) = \nu_3(3^1 \cdot 4) = 1$
- $\nu_3(\frac{5}{9}) = \nu_3(5 \cdot 3^{-2}) = -2$

Structures

• Definition (Value Group)

The subgroup of G, $\nu(F^*) = \{\nu(a) \mid a \in F^*\}$

- Definition (Valuation Ring) The subring of $F, V = \{a \in F \mid \nu(a) \ge 0\}$
- Definition (Discrete Valuation Ring)
 If ν is discrete then V is a discrete valuation ring (DVR)

- Recall: $\nu_p : \mathbb{Q} \to \mathbb{Z} \cup \{\infty\}, \ \nu_p(p^k \frac{a}{b}) = k \text{ where } p \nmid ab$
- The value group of ν_p is \mathbb{Z}
- Assume $\frac{r}{s}$ is in lowest terms
- The valuation ring of ν_p is $\mathbb{Z}_{(p)} = \{\frac{r}{s} \mid p \nmid s\}$, the *p*-adic integers
- The 3-adic integers:

-
$$\frac{5}{9} \notin \mathbb{Z}_{(3)}$$
 while $1, 12 \in \mathbb{Z}_{(3)}$
- $\mathbb{Z} \subset \mathbb{Z}_{(3)}$

- $\frac{n}{a} \in \mathbb{Z}_{(3)}$ where $n \in \mathbb{Z}$ and gcd(a, 3) = 1

Properties

For general ν :

- For all $a, b \in V, \nu(a) \le \nu(b) \Longleftrightarrow b \in \langle a \rangle$
- The ideals of V are totally ordered by set inclusion
- V has unique maximal ideal $M = \{a \in V \mid \nu(a) > 0\}$

For discrete ν :

- $t \in V$ with $\nu(t) = 1$ is a **uniformizer**
- $M = \langle t \rangle$

Proof.

Let $I \neq \langle 0 \rangle$ be an ideal of V. Then for some $a \in I$ there is a least integer k such that $\nu(a) = k$. Let $b, c \in I$ and suppose b = ac. Then $\nu(b) = \nu(a) + \nu(c) = k + \nu(c) \geq k$. Thus I contains every $b \in V$ with $\nu(b) \geq k$, and so the only ideals of V are $I_k = \{b \in V \mid \nu(b) \geq k\}$. These ideals then form a chain $V = I_0 \supset I_1 \supset I_2 \supset \cdots \supset \langle 0 \rangle$.

Proof.

Let $t \in V$ be a uniformizer. For $x \in \langle t^k \rangle$,

$$\nu(x) = \nu(at^k) = \nu(a) + k\nu(t) = \nu(a) + k.$$

Thus, we can take $I_k = \langle t^k \rangle$.

Remark

This illustrates that $\nu(a) \leq \nu(b) \iff b \in \langle a \rangle$ for all $a, b \in V$

Corollary

Every nonzero ideal of V is a power of the unique maximal ideal, $\langle t \rangle$.

- $M = \{ \frac{r}{s} \in \mathbb{Z}_{(p)} : p \mid r \} = \langle p \rangle$
- $\mathbb{Z}_{(p)} = \left\langle p^0 \right\rangle \supset \left\langle p^1 \right\rangle \supset \left\langle p^2 \right\rangle \supset \left\langle p^3 \right\rangle \supset \cdots \supset \left\langle 0 \right\rangle$
- 3-adic ideals:
 - Maximal ideal $\langle 3 \rangle$
 - $\mathbb{Z}_{(3)} = \langle 1 \rangle \supset \langle 3 \rangle \supset \langle 3^2 \rangle \supset \langle 3^3 \rangle \supset \cdots \supset \langle 0 \rangle$

- Let D be a UFD with field of fractions K
- Fix a prime element p of D
- Any $x \in D$ can be written uniquely as $x = ap^k$ where $p \nmid a$
- Any $y \in K^*$ can be written uniquely as $y = qp^k$
 - $q \in K^*$ is the quotient of $r, s \in D$ such that $p \nmid r, p \nmid s$
- Define $\nu: K \to \mathbb{Z} \cup \{\infty\}, \, \nu(y) = k$

Thank you! Questions?