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Abstract

This report studies modules, structures which are a generalization of vector spaces
over any ring rather than a field. We examine basic properties of modules, including
those similar to properties of vector spaces, groups, rings, and other familiar algebraic
structures. We will focus on the direct sum of modules, and what properties are
necessary for a module to be isomorphic to the direct sum of modules, and thus have
a direct decomposition. This involves free modules and torsion modules, along with
the study of sequences of module homomorphisms, and properties of sequences such as
exactness and whether sequences split.

1 Introduction

We begin with a ring and consider a structure which has the properties of a vector space with
the exception of being over a ring rather than a field. We call this structure a module, or
an R-module over a ring R. If the base ring R is not commutative, we differentiate between
left and right modules.

Definition 1.1. A left R-module M over a ring R is an abelian additive group together
with a map R×M →M , denoted by (r,m) 7→ rm that satisfies the following properties for
r, s ∈ R and m,n ∈M :

(i) (r + s)m = rm+ sm

(ii) r(m+ n) = rm+ rn

(iii) (rs)m = r(sm)

(iv) if 1 ∈ R, then 1m = m.
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Note that rings act on modules similarly to how groups act on sets with group actions.

Example 1.2. [1] Consider a ring R and the set of n × n matrices over R, Mn(R). Define
the action of R on Mn(R) as r 7→ rA for r ∈ R and A ∈ Mn(R), where rA denotes scalar
multiplication by r. Then Mn(R) is an R−module under matrix addition, since Mn(R) is
an abelian additive group, and scalar multiplication satisfies the necessary module axioms.

Some familiar algebraic structures are examples of modules. Vector spaces are modules
over fields, ideals of a ring R are R−modules, and abelian groups are modules over the ring
of integers. Additionally, rings are always modules over themselves.

2 Some Properties of Modules

Modules exhibit many familiar properties that we have seen from vector spaces and other
algebraic structures.

Definition 2.1. A non-empty subset N of an R−module M is a submodule if for every
r, s ∈ R and n, l ∈ N , we have that rn+ sl ∈ N .

Example 2.2. Consider the ring of integers, and the ideal 6Z. Then 6Z is a Z-module, and
12Z is a subgroup of 6Z. We only need to show that ax + by ∈ 12Z for x, y ∈ 12Z and
a, b ∈ Z. If x, y ∈ 12Z, then x = 12q for some integer q, and y = 12r for some integer r.
Then ax + by = a(12q) + b(12r) = 12(aq) + 12(br) = 12(aq + br) ∈ 12Z since a, b, q, r ∈ Z.
Thus 12Z is a submodule of 6Z.

Proposition 2.3. Consider a ring R and an R-module M . Then, for r ∈ R and m ∈M ,

(i) (r)0M = 0M

(ii) (0R)m = 0M

(iii) (−r)m = −(rm) = r(−m)

(iv) (nr)m = n(rm) = r(nm) for all n ∈ Z.

We want to work with functions between modules. This gives rise to the study of module
homomorphisms, which behave exactly as one would expect them to.

Definition 2.4. If M and N are R−modules, a module homomorphism from M to N is a
mapping f : M → N so that

(i) f(m+ n) = f(m) + f(n)

(ii) f(rm) = rf(m)

for m,n ∈ M and r ∈ R. A homomorphism from a module to itself is a module endo-
morphism, and a bijective module homomorphism is a module isomorphism. A surjective
homomorphism is an epimorphism, and an injective homomorphism is a monomorphism.
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Example 2.5. Consider the Z-modules M = Z5 = {0, 1, 2, 3, 4} and N = {0, 2, 4, 6, 8}.
Note that these are indeed modules, because all abelian groups are modules over the ring of
integers. Then there is a module isomorphism φ : M → N where φ(x) = 2x for x ∈ M , so
M ∼= N .

We will give an example of modules that are not isomorphic later, in the section on free
modules.

Since modules are additive abelian groups, we understand module quotient structures.

Proposition 2.6. Suppose R is a ring, M an R−module, and N a submodule of M . Then
M/N , the quotient group of cosets of N , is an R−module.

Proof. Since M and N are additive abelian groups, it follows that M/N is an additive
abelian group. We define the action of R on M/N by (r,m + N) 7→ rm + N , and use
coset operations and the action of R on representatives from M to see that for r, s ∈ R and
m+N, l +N ∈M/N ,

(i) (r + s)(m+N) = r(m+N) + s(m+N) = (rm+N) + (sm+N)

(ii) r((m+N) + (l +N)) = r(m+ l +N) = rm+ rl +N = (rm+N) + (rl +N)

(iii) (rs)(m+N) = (rsm+N) = r(sm+N)

(iv) if 1 ∈ R, then 1(m+N) = 1m+N = m+N.

For the purposes of this report, we will be primarily concerned with modules over com-
mutative rings. For reasons of simplicity, this report will typically refer to modules, rather
than specifying left or right modules, and will assume rings are commutative unless stated
otherwise.

3 Direct Sums, Free Modules, and Torsion

We begin with the notion of the direct product from group theory. Since modules are additive
abelian groups, it is clear that we have a way of computing the direct product of modules.
First, consider a set I of indices, either finite or infinite. A family (xi, i ∈ I) is a function
on I whose value at i is xi. Suppose R is a ring, and Mi (for i ∈ I) are R-modules. We
define the direct product of modules Mi, denoted by

∏
i∈I Mi, to be all families (xi, i ∈ I)

with xi ∈ Mi. Addition is defined by (xi) + (yi) = (xi + yi), and scalar multiplication is
defined by r(xi) = (rxi). Complications arise in the cast of the index set I being infinite, so
in order to simplify things, we add a new definition.

Definition 3.1. The external direct sum of the modules Mi for i ∈ I is
⊕

i∈I Mi, all families
(xi, i ∈ I) with xi ∈ Mi such that xi = 0 for all except finitely many i. That is, no xi can
take on nonzero values for infinite indices i. Addition and scalar multiplication are the same
as for the direct product defined above, so for finite I, we have that

∏
i∈I Mi =

⊕
i∈I Mi.
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The notation for direct sums and direct products is fairly abstract, so a straightforward
example can help to clarify these definitions.

Example 3.2. Suppose M and N are R-modules, and we want to find M ⊕ N . Since
we are finding the direct sum of only two modules, we do not have to worry about the
distinction between the direct sum and the direct product, and M ⊕ N = {(m,n)|m ∈
M,n ∈ N}. For an explicit example, let M = Z2 and N = Z3 be Z-modules. Then
M ⊕N = {(0, 0), (0, 1), (0, 2), (1, 0), (1, 1)(1, 2)}. Then, we see that M ⊕N ∼= Z6.

Definition 3.3. [9] Suppose M is an R-module, and M1,M2 are submodules of M . M is
the internal direct sum of M1 and M2 if M = M1 + M2 and M1 ∩M2 = 0. In this case,
every m ∈M can be written uniquely as m = m1 +m2 for m1 ∈M1, m2 ∈M2. If M is the
internal direct sum of M1 and M2, then M is isomorphic to the external direct sum of M1

and M2. That is, M ∼= M1 ⊕M2. Because interal direct sums are isomorphic to external
direct sums, we typically will refer only to direct sums without specifying any further. If M
is an R-module and M ∼= M1 ⊕M2, then M1 ⊕M2 is called a direct decomposition of M . A
module is indecomposable if it cannot be written as the direct sum of nonzero submodules.
Then, we become interested in when modules are decomposable.

When R is a field, every R-module has a basis, since every R-module is a vector space.
However, over a general ring, not every module has a basis. Modules that do have bases are
called free.

Proposition 3.4. A free R-module M is isomorphic to the direct sum of “copies” of R.

Proof. [7] Let X be a basis of M . We consider the family of modules {Rx|x ∈ X} where for
each x ∈ X, Rx is R viewed as a module over itself. Let S =

⊕
x∈X Rx. Consider z ∈ M ,

written uniquely with respect to the basis X as z =
∑
axx for x ∈ X. Then, define the

homomorphism φ : M → S by φ(z) = (ax)x∈X . By the definition of the direct sum, ax = 0
for all but finitely many x ∈ X. Thus φ(x) ∈ S. Define µ : S → M by µ(ax) =

∑
axx.

Then, µ is a module homomorphism, and is the inverse of φ, so φ is an isomorphism.

Given a finitely generated free module M over a commutative ring R, the number of
elements in the basis of M is the rank of M . Note that when R is a field and M is a vector
space, rank is dimension and every vector space of the same rank is isomorphic. This is not
the case for general modules.

Example 3.5. Let M and N be free modules over Z, with bases BM =
{[

1
0

]
,
[
0
1

]}
and

BN =
{[

2
0

]
,
[
0
2

]}
. Then, M = {[ab

]
: a, b ∈ Z}, and N = {[2a2b

]
: a, b ∈ Z}. If M and N were

vector spaces, they would be isomorphic. However, because our scalar multiples are from
a ring that does not have multiplicative inverses, N has no vectors with odd-parity entries.
Thus, M and N are not isomorphic.

Definition 3.6. [4] A module M over a ring R is cyclic if there is an a ∈M so that aR = M .

The modules described in Example 2.2, 6Z and 12Z, are examples of cyclic modules.
Note that since we are working with commutative rings, it is not important whether we
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express a cyclic module as M = aR or M = Ra, but in the case of noncommutative rings,
this would be an important distinction.

Modules over special types of rings tend to be particularly interesting. First, we look at
modules over integral domains. A characterizing property of an integral domain is the lack
of zero divisors, and this property extends to modules over integral domains by torsion. Let
R be an integral domain and M be an R-module. Then x ∈M is a torsion element if rx = 0
for some nonzero r ∈ R.

Proposition 3.7. Let M be a module. Then the set T of all torsion elements of M is a
submodule of M .

Proof. The four module axioms are inherited from M , so we need only prove that T is a
closed additive abelian group. If x, y ∈ T , then there is some r1 6= 0 so that r1x = 0, and
some r2 6= 0 so that r2y = 0. Then, for x+ y ∈M and r1r2 ∈ R,

r1r2(x+ y) = r1r2x+ r1r2y by the module axioms for M

= r2(r1x) + r1(r2y) by commutativity of R

= r2(0) + r1(0) by hypotheses

= 0 by properties of modules.

Additionally, we know that r1r2 6= 0, since an integral domain has no zero divisors, so we
can conclude that x+ y ∈ T . Therefore T is closed, and thus is a submodule of M .

This submodule is called the torsion submodule. If T = M , then M is called a torsion
module. If T = {0}, M is said to be torsion free. Note that free modules are torsion free,
but the converse is only guaranteed for modules over principal ideal domains. In fact, there
are many special properties of modules over PIDs, which will be explored throughout this
report.

Proposition 3.8. A cyclic torsion R-module T over a PID is isomorphic to a quotient of
R:

T ∼= R/(r)

where r is the order of the element a that satisfies T = aR.

Theorem 3.9. [5] Let T be a finitely generated torsion module over a PID R. Then T is
isomorphic to the direct sum of cyclic torsion R-modules; that is,

T ∼= R/(a1)⊕ · · · ⊕R/(am)

for some m with nonzero ai.

Theorem 3.10. [5] If R is a PID, then every finitely generated R-module M is isomorphic
to F ⊕ T where F is a finite free R-module and T is a finitely generated torsion R-module,
which is of the form T ∼=

⊕m
j=iR/(aj).

Proof. [5] Let x1, . . . , xn be generators for M . Define a function f : Rn →M by f(ei) = xi.
Then there is a surjective map g : Rn →M so that M ∼= Rn/N . There is also an isomorphism
so that Rn/N ∼=

⊕m
j=1R/(aj)⊕Rn−m for some m ≤ n and all aj 6= 0. Then,

⊕m
j=1R/(aj) is

a torsion module T , and Rn−m is a finite free module F , so we conclude that M ∼= F⊕T .
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4 Exact Sequences and Splitting Sequences

For the remainder of this report, it will be beneficial for the reader to be familiar with
commutative diagrams and diagram chasing. A commutative diagram is a directed graph of
vertices (which in our case will be modules and groups) and edges (which in our case are
homomorphisms), where all directed paths with the same start point and end point yield the
same result through function composition. Diagram chasing is a proof method that relies on
the commutativity and exactness of these diagrams, and the injectiveness or surjectiveness
of the functions in diagrams.

Suppose R is a ring, M1, and M2, M3 are R-modules. Then a sequence of module
homomorphisms

M1 M2 M3

f2f1

is exact if im(f1) = ker(f2). For the remainder of this section, we assume R is a ring and
that all sequences are sequences of R−module homomorphisms.

A sequence of n module homomorphisms f1, . . . , fn is exact if im(fi) = ker(fi+1) for all
1 ≤ i ≤ n. An exact sequence of the form

0 M1 M2 M3 0
f1 f2

is called a short exact sequence. Exactness at M1 implies that ker(f1) = 0, so f1 is injective.
Exactness at M2 implies im(f1) = ker(f2), and exactness at M3 implies im(f2) = M3, so f2
is surjective.

Following are some fundamental examples of short exact sequences. First, for any R-
module M and submodule N , there is a short exact sequence

0 N M M/N 0
f1 f2

where the injective function f1 : N →M is defined by f1(n) = n for n ∈ N , and all elements
of M not contained in N have empty pre-images. The surjective mapping f2 : M → M/N
is defined by f2(m) = m+N , the coset of N with representative m for m ∈M . Then, it is
clear that im(f1) =ker(f2), since im(f1) = N , and n+N = N = 0 +N for n ∈ N .

For ideals I and J of a ring R such that I + J = R, there is a short exact sequence

0 I ∩ J I ⊕ J R 0
f1 f2

where f1 : I ∩ J → I ⊕ J is the map f1(x) = (x,−x), and f2 : I ⊕ J → R is addition
where ker(f2) = {(x,−x)|x ∈ I ∩ J}. This is one example of the involvement of direct sums
in exact sequences of module homomorphisms, but there is a more general case involving
homomorphisms between any two modules and their direct sum.

Consider two R−modules, L and M , and their direct sum, L⊕M . There is a short exact
sequence
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0 L L⊕M M 0
f1 f2

where the injective map f1 : L → L ⊕M is the embedding of l ∈ L into L ⊕M , and the
surjective map f2 : L⊕M →M is the projection of x ∈ L⊕M onto M , so that f2(f1(l)) = 0
for l ∈ L.
Remark 4.1. [10] Given a sequence of R−module homomorphisms

· · · Mi−1 Mi Mi+1 · · ·
fi−1 fi

we have im(fi−1) ⊆ ker(fi) if and only if the function composition fi(fi−1(x)) = 0 for
x ∈Mi−1.

Definition 4.2. [8] A short exact sequence

0 M1 M2 M3 0
f1 f2

is said to split on the right if there is a homomorphism g2 : M3 → M2 so that the function
composition f2 ◦ g2 = 1. The sequence splits on the left if there is a homomorphism g1 :
M2 → M1 so that f1 ◦ g1 = 1. A sequence that splits on the left and the right splits, and is
called a splitting sequence.

Theorem 4.3. The Five Lemma[8] Consider the following commutative diagram where
both sequences of homomorphisms are exact:

L1 L2 L3 L4 L5

M1 M2 M3 M4 M5

g1 g4g2 g3

f2 f3f1 f4

h1 h2 h3 h4 h5

Consider the homomorphisms hi, 1 ≤ i ≤ 5. If h1 is surjective, h2 and h4 are bijective, and
h5 is injective, we can conclude that h3 is an isomorphism.

Proof. [8] We make two separate claims that together form The Five Lemma:

Claim 1. If h2 and h4 are surjective and h5 is injective, then h3 is surjective.

Claim 2. If h2 and h4 are injective and h1 is surjective, then h3 is injective.
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To prove (1), consider x ∈ L3. Then g3(x) ∈ L4, and thus g3(x) = h4(y) for some y ∈M4

since h4 is surjective. Then, g4(g3(x)) = g4(h4(y)) = 0 by exactness at L4. Since the diagram
is commutative, we have g4(h4(y)) = h5(f4(y)). Therefore g4(g3(x)) = h5(f4(y)) = 0. Since
h5(f4(y)) = 0, f4(y) ∈ ker(h5), and h5 is injective, we know that f4(y) = 0.
Then y ∈ ker(f4) = im(f3) by exactness at M4. Thus y = f3(a) for some a ∈ M3. Because
the diagram is commutative, we use diagram chasing and substitutions to see that g3(x) =
h4(y) = h4(f3(a)) = g3(h3(x)). Then, x−h3(a) ∈ ker(g3) = im(g2). We let x−h3(a) = g2(b)
for some b ∈ L2. Since h2 is surjective, b = h2(m) for some m ∈M2, and by commutativity,
x − h3(a) = g2(b) = g2(h2(m)) = h3(f2(m)). Thus, x − h3(a) = h3(f2(m)), so x = h3(a +
f2(m)). Therefore x ∈ im(h3), and since x is abritrary, h3 is surjective.

To prove (2), we suppose a ∈ ker(h3). By commutativity, we have g3(h3(a)) = h4(f3(a)).
Since a ∈ ker(h3), h4(f3(a)) = g3(0) = 0. Since h4 is injective, f3(a) = 0. Thus a ∈
ker(f3) = im(f2), so a = f2(z) for some z. Then 0 = h3(a) = h3(f2(z)) = g2(h2(z)). Thus
h2(z) ∈ ker(g2) = im(g1), and h2(z) = g1(u). Since h1 is surjective, u = h1(v). Then,
h2(z) = g1(h1(v)). By commutativity, we have g1(h1(v)) = h2(f1(v)) = h2(z). Since h2 is
injective, we have that z = f1(v). Then, a = f2(f1(v)) = 0 by exactness. Therefore h3 is
injective.

We are more interested in the version of The Five Lemma that applies to short sequences.

Corollary 4.4. The Short Five Lemma [8] We consider a commutative diagram of short
exact sequences, as below:

0 L1 L2 L3 0

0 M1 M2 M3 0

g1 g2

f1 f2

h1 h2 h3

It follows directly from The Five Lemma that if h1 and h3 are isomorphisms, so is h2.

Now we can present a condition with which a module is isomorphic to the direct sum of
modules.

Theorem 4.5. [6] Let R be a ring, and let M,N, and P be R-modules, with a short exact
sequence of the form

0 N M P 0
f g

Then, the following are equivalent:

(i) There is a homomorphism f ′ : M → N so that f ′(f(n)) = n for all n ∈ N ; the sequence
splits on the left.
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(ii) There is a homomorphism g′ : P →M so that g′(g(p)) = p for all p ∈ P ; the sequence
splits on the left.

(iii) There is an isomorphism φ : M → N ⊕ P , and the sequence splits.

We can illustrate this theorem by applying The Five Lemma to the commutative diagram

0 N N ⊕ P P 0

0 N M P 0
f g

id φ id

Then, we can see that M ∼= N ⊕ P , and we have some insight into the structure of the
original exact sequence. We can regard f as the embedding of N into M , and g as the
projection of M onto P .

5 Modules Over Principal Ideal Domains

As seen above in the discussion of torsion modules, modules over PIDs exhibit particularly
nice properties, especially regarding direct sum isomorphisms. With the goal to introduce
the Fundamental Theorem of Modules over PIDs, we explore some preliminary propositions.

Proposition 5.1. [10] Suppose R is a PID. Then every submodule of the module Rn is free
with rank less than or equal to n.

Proof. (By induction on n.) If n = 1, then every submodule M ⊆ R is M = rR for some
r ∈ R. If r = 0, then M = {0} ∼= R0. If r = 1, then M = rR ∼= R1. Then, we assume that
every submodule of Rn−1 is free of rank less than or equal to n− 1 for n >1. Let K ⊆ Rn be
a submodule, and define λ : Rn → R by λ(a1, . . . , an) = an with ai ∈ R for 1 ≤ i ≤ n. Then
λ is a homomorphism where ker(λ) = Rn−1 ⊕ 0 ∼= Rn−1. So λ(K) ⊆ R, and λ(K) = rR for
some r ∈ R. If r = 0, then K ⊆ker(λ) = Rn−1, which implies by the induction hypothesis
that K is free of rank less than or equal to n − 1. If r 6= 0, define φ : K → λ(K) by
φ(k) = λ(k) for k ∈ K. Then φ is an R-module epimorphism, and ker(φ) ⊆ Rn−1. By the
induction hypothesis, ker(φ) ∼= Rm for some m ≤ n− 1. There is an exact sequence

0 ker(φ) K λ(K) 0

where φ is the mapping from K to λ(K). Since λ(K) is free, the sequence splits. Therefore
K ∼= ker(φ)⊕ λ(K) ∼= Rm +R ∼= Rm+1, with m+ 1 ≤ n.

Proposition 5.2. [10] Let R be a PID. Fix integers 1 ≤ k ≤ n, and consider R-modules Rk

and Rn. Let φ : Rn → Rn be a module monomorphism. There is a commutative diagram of
group homomorphisms
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Rk Rn

Rk Rn
φ

φ̄

such that the matrix representing the homomorphism φ̄ is diagonal.

The proof of this proposition is quite involved, but can be viewed in Sean Sather-
Wagstaff’s Rings, Modules, and Linear Algebra ([10]).

We need one more result before we can explore the Fundamental Theorem.

Proposition 5.3. [10] Let R be a ring. Consider the commutative diagram of group homo-
morphisms

K ′ N ′.

K N
h

h′

φ ψ

Then there is a unique module homomorphism α : N/im(h) → N ′/im(h′) that makes the
following diagram commute, where π and π′ are the canonical epimorphisms π(x) = x+
im(h) and π′(x′) = x′+ im(h′) for x ∈ N , x′ ∈ N ′:

K ′ N ′ N ′/im(h′) 0

K N N/im(h) 0

h′ π′

h π

φ ψ α

Then, if ψ is surjective, so is α. If ψ is injective and φ is surjective, α is injective.

Proof can be found in [10].
Now we are ready to present the final theorem of this report, which follows from these

propositions together with Theorem 3.9 and Theorem 3.10 regarding free modules and torsion
modules.
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Theorem 5.4. The Fundamental Theorem of Modules Over PIDs [10] Suppose R
is a PID and M is a finitely generated R-module. Then M is isomorphic to the direct sum
of cyclic R-modules,

M ∼= R/x1R⊕ · · · ⊕R/xkR⊕Rn−k

with xi ∈M .

Proof. [10] Let {m1, . . . ,mn} be a generating set for M . Then the map f : Rn →M defined
by f(r1, . . . , rn) =

∑
i rimi is a well-defined surjective group homomorphism that expresses

elements of Rn as linear combinations of the generators of M . Because ker(f) ⊆ Rn, Propo-
sition 5.1 yields an isomorphism φ : Rk → ker(f), so Rk ∼= ker(f) for some k ≤ n. Define
λ : ker(f) → Rn to be the natural inclusion mapping. Then, the function composition of
φ and λ is h : Rk → Rn. Since φ is an epimorphism and λ is a monomorphism, h is a
monomorphism. Then, Proposition 5.2 yields a commutative diagram of group homomor-
phisms

Rk Rn

Rk Rn
h

h′

where the homomorphism h′ can be represented by a diagonal matrix; that is, [h′] = (xi,j)
where xi,j = 0 for i 6= j. We let f1, . . . , fn ∈ Zn be the standard basis. Then,

M ∼= Rn/ker(f)

= Rn/im(h)
∼= Rn/im(h′)

= Rn/(x1,1f1, . . . , xk,kfk)R

∼= R/x1,1R⊕ · · · ⊕R/xk,kR⊕ Zn−k.

6 Conclusion

Examining the direct sum of modules is a way to decompose the structure of modules into
more basic pieces, so it makes sense to ask the question of when a module is directly decom-
posable. In order to answer this question, we look at torsion modules, free modules, splitting
sequences, and finitely generated modules over principal ideal domains. We have seen that
any module with a basis is the direct sum of copies of its base ring, that a splitting sequence
of module homomorphisms implies an isomorphism to a direct sum of modules, and that any
arbitrary finitely generated module over a principal ideal domain is isomorphic to the direct
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sum of cyclic modules. This last result is suggestive of the Fundamental Theorem of Finitely
Generated Abelian Groups, which states that any finitely generated abelian group is isomor-
phic to the direct product of cyclic abelian groups. This is, of course, not a coincidence,
as modules are abelian groups, so the the Fundamental Theorem of Modules over PIDs
is essentially a generalization of the Fundamental Theorem of Finitely Generated Abelian
Groups. Modules are very interesting structures and are a natural topic to study following
linear algebra, group theory, and ring theory, as they extend and sometimes generalize the
properties of the algebraic structures studied in these fields.
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