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Modules Over Rings

Definition

A left R-module M over a ring R is an abelian additive group
together with a map R×M →M , denoted by (r,m) 7→ rm that
satisfies the following properties for r, s ∈ R and m,n ∈M :

I (r + s)m = rm+ sm

I r(m+ n) = rm+ rn

I (rs)m = r(sm)

I if 1 ∈ R, then 1m = m
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Module Examples

I Vector Spaces are
F -modules

I Rings are
R-modules

I Abelian Groups
are Z-modules

I Ideals are
R-modules

Matrices over a ring [1]

I R ring, Mn(R) set of n× n
matrices over R

I R acts on Mn(R) by scalar
multiplication, r 7→ rA for r ∈ R
and A ∈Mn(R)

I Mn(R) is an R−module
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Basic Properties

Proposition

Consider a ring R and an R-module M . Then, for r ∈ R and
m ∈M ,

I (r)0M = 0M
I (0R)m = 0M
I (−r)m = −(rm) = r(−m)

I (nr)m = n(rm) = r(nm) for all n ∈ Z.
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Submodules

Definition

A non-empty subset N of an R−module M is a submodule if for
every r, s ∈ R and n, l ∈ N , we have that rn+ sl ∈ N .

I R ring of integers with ideal 6Z⇒ 6Z is a Z-module

I 12Z subset of 6Z
I x, y ∈ 12Z⇒ x = 12q and y = 12r for some q, r ∈ Z
I ax+ by = a(12q) + b(12r) = 12(aq) + 12(br) =

12(aq + br) ∈ 12Z
I So, 12Z is a submodule of 6Z
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Module Homomorphisms

Definition

If M and N are R−modules, a module homomorphism from M
to N is a mapping f : M → N so that

(i) f(m+ n) = f(m) + f(n)

(ii) f(rm) = rf(m)

for m,n ∈M and r ∈ R.
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Quotient Structures

Proposition

Suppose R is a ring, M an R−module, and N a submodule of
M . Then M/N , the quotient group of cosets of N , is an
R−module.
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Quotient Structures

Proof.

I M/N is an additive abelian group

I Define the action of R on M/N by (r,m+N) 7→ rm+N

I By coset operations, for r, s ∈ R and m+N, l +N ∈M/N ,

(i) (r+s)(m+N) = r(m+N)+s(m+N) = (rm+N)+(sm+N)

(ii) r((m+N) + (l +N)) = r(m+ l +N) = rm+ rl +N =
(rm+N) + (rl +N)

(iii) (rs)(m+N) = (rsm+N) = r(sm+N)

(iv) if 1 ∈ R, then 1(m+N) = 1m+N = m+N.
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Direct Sum of Modules

I I set of indices (finite or infinite)

I A family (xi, i ∈ I) is a function on I whose value at i is xi

Definition [8]

The external direct sum of the modules Mi for i ∈ I is
⊕

i∈I Mi,
all families (xi, i ∈ I) with xi ∈Mi such that xi = 0 for all
except finitely many i.

I Addition defined by (xi) + (yi) = (xi + yi)

I Scalar multiplication defined by r(xi) = (rxi)
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Direct Sum of Modules

I For finite I, direct sum corresponds to direct product

I M , N are R-modules. Then

M ⊕N = {(m,n)|m ∈M,n ∈ N}

I Example: Let M = Z2 and N = Z3 be Z-modules, then

M ⊕N = Z2 ⊕ Z3 = {(0, 0), (0, 1), (0, 2), (1, 0), (1, 1)(1, 2)}.

Then Z2 ⊕ Z3
∼= Z6.
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Internal Direct Sum

I R-module M with submodules M1, M2

I M is the internal direct sum of M1 and M2 if
M = M1 +M2 and M1 ∩M2 = 0

I Internal direct sum is isomorphic to external direct sum

I A direct decomposition of M is M1 ⊕M2 where
M ∼= M1 ⊕M2

I M is indecomposable if M �M1 ⊕M2 for M1, M2 6= 0
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Free Modules and Cyclic Modules

I Modules with bases are called free

I M is a free module, then the rank of M is the number of
elements in its basis

I An R-module M is cyclic if ∃ a ∈M so M = aR

Proposition

A free R-module M is isomorphic to the direct sum of “copies”
of R.
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Free Modules

Example

Let M and N be free modules over Z, with bases
BM =

{[
1
0

]
,
[
0
1

]}
and BN =

{[
2
0

]
,
[
0
2

]}
. Then,

M = {[ab
]

: a, b ∈ Z}, and N = {[2a2b
]

: a, b ∈ Z}. If M and N
were vector spaces, they would be isomorphic. However,
because our scalar multiples are from a ring that does not have
multiplicative inverses, N has no vectors with odd-parity
entries. Thus, M and N are not isomorphic.
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Torsion

Let R be an integral domain and M be an R-module:

I x ∈M is a torsion element if rx = 0 for r ∈ R, r 6= 0

I T , the set of all torsion elements of M , is a submodule of M

I T is called the torsion submodule of M

I if T = M , M is a torsion module

I if T = {0}, M is torsion free
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Torsion Modules

Theorem [5]

Let T be a finitely generated torsion module over a PID R, and
〈ai〉 ideals of R. Then T is isomorphic to the direct sum of
cyclic torsion R-modules; that is,

T ∼= R/〈a1〉 ⊕ · · · ⊕R/〈am〉

for some m and nonzero ai ∈ R.
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Torsion Modules

Theorem

[5] If R is a PID, then every finitely generated R-module M is
isomorphic to F ⊕ T where F is a finite free R-module and T is
a finitely generated torsion R-module, which is of the form
T ∼=

⊕m
j=iR/〈aj〉.
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Exact Sequences

Suppose R is a ring, M1, and M2, M3 are R-modules.

A sequence of module homomorphisms

M1 M2 M3

f2f1

is exact if im(f1) = ker(f2).
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Short Exact Sequences

An exact sequence of the form

0 M1 M2 M3 0
f1 f2

is called a short exact sequence.

I f1 is injective I f2 is surjective
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Examples of Short Exact Sequences

For any R-module M with submodule N , there is a short exact
sequence

0 N M M/N 0
f1 f2

I f1 : N →M defined by f1(n) = n

I f2 : M →M/N defined by f2(m) = m+N
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Examples of Short Exact Sequences

For ideals I and J of a ring R such that I + J = R, there is a
short exact sequence

0 I ∩ J I ⊕ J R 0
f1 f2

I f1 : I ∩ J → I ⊕ J is the map f1(x) = (x,−x)

I f2 : I ⊕ J → R is addition where
ker(f2) = {(x,−x)|x ∈ I ∩ J}
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Examples of Short Exact Sequences

L and M are R−modules with direct sum L⊕M . There is a
short exact sequence

0 L L⊕M M 0
f1 f2

I f1 : L→ L⊕M is the embedding of l ∈ L into L⊕M

I f2 : L⊕M →M is the projection of x ∈ L⊕M onto M , so
that f2(f1(l)) = 0 for l ∈ L
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Splitting Sequences

Definition [8]

A short exact sequence

0 M1 M2 M3 0
f1 f2

is said to split on the right if there is a homomorphism
g2 : M3 →M2 so that the function composition f2 ◦ g2 = 1. The
sequence splits on the left if there is a homomorphism
g1 : M2 →M1 so that f1 ◦ g1 = 1. A sequence that splits on the
left and the right splits, and is called a splitting sequence.
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The Five Lemma
Consider the following commutative diagram where both
sequences of homomorphisms are exact:

L1 L2 L3 L4 L5

M1 M2 M3 M4 M5

g1 g4g2 g3

f2 f3f1 f4

h1 h2 h3 h4 h5

I h1 surjective

I h2, h4 bijective

I h5 injective

⇒ h3 is an
isomorphism.
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The Five Lemma Proof
Claim 1. If h2 and h4 are surjective and h5 is injective, then h3 is
surjective.

L1 L2 L3 L4 L5

M1 M2 M3 M4 M5

g1 g4g2 g3

f2 f3f1 f4

h1 h2 h3 h4 h5

I x ∈ L3 ⇒ g3(x) ∈ L4 ⇒ g3(x) = h4(y) for y ∈M4

I g4(g3(x)) = g4(h4(y)) = 0

I g4(h4(y)) = h5(f4(y))⇒ g4(g3(x)) = h5(f4(y)) = 0

I h5(f4(y)) = 0⇒ f4(y) ∈ ker(h5)⇒ f4(y) = 0.

I y ∈ ker(f4) = im(f3)⇒ y = f3(a) for some a ∈M3.
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The Five Lemma Proof

L1 L2 L3 L4 L5

M1 M2 M3 M4 M5

g1 g4g2 g3

f2 f3f1 f4

h1 h2 h3 h4 h5

I g3(x) = h4(y) = h4(f3(a)) = g3(h3(a))⇒ x− h3(a) ∈ ker(g3) = im(g2)

I x− h3(a) = g2(b) for b ∈ L2

I b = h2(m) for m ∈M2, and
x− h3(a) = g2(b) = g2(h2(m)) = h3(f2(m))

I x− h3(a) = h3(f2(m))⇒ x = h3(a+ f2(m))

I x ∈ im(h3)⇒ h3 is surjective.
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The Five Lemma Proof
Claim 2. If h2 and h4 are injective and h1 is surjective, then h3 is
injective.

L1 L2 L3 L4 L5

M1 M2 M3 M4 M5

g1 g4g2 g3

f2 f3f1 f4

h1 h2 h3 h4 h5

I a ∈ ker(h3)⇒ h4(f3(a)) = g3(h3(a)) = g3(0) = 0

I f3(a) = 0⇒ a ∈ ker(f3) = im(f2)⇒ a = f2(z) for z ∈M2

I 0 = h3(a) = h3(f2(z)) = g2(h2(z))⇒ h2(z) ∈ ker(g2) = im(g1)

I h2(z) = g1(u), u = h1(v)⇒ h2(z) = g1(h1(v)) = h2(f1(v)) = h2(z)

I z = f1(v)⇒ a = f2(f1(v)) = 0⇒ h3 is injective.
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The Short Five Lemma

We consider a commutative diagram of short exact sequences,
as below:

0 L1 L2 L3 0

0 M1 M2 M3 0

g1 g2

f1 f2

h1 h2 h3

It follows directly from The Five Lemma that if h1 and h3 are
isomorphisms, so is h2.
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Theorem [6]

Let R be a ring, and let M,N, and P be R-modules, with a
short exact sequence of the form

0 N M P 0
f g

Then, the following are equivalent:

(i) There is a homomorphism f ′ : M → N so that
f ′(f(n)) = n for all n ∈ N ; the sequence splits on the left.

(ii) There is a homomorphism g′ : P →M so that g′(g(p)) = p
for all p ∈ P ; the sequence splits on the right.

(iii) There is an isomorphism φ : M → N ⊕ P , and the
sequence splits.
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We can illustrate this theorem by applying The Five Lemma to
the commutative diagram

0 N N ⊕ P P 0

0 N M P 0
f g

id φ id

Then, we can see that M ∼= N ⊕ P , and we have some insight
into the structure of the original exact sequence. We can regard
f as the embedding of N into M , and g as the projection of M
onto P .
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An Example of a Splitting Sequence

Consider the example from earlier with Z-modules Z2 and Z3.
There is a short exact sequence

0 Z2 Z6 Z3 0
f g

I f(x) = 3x for x ∈ Z2

I let f ′ : Z6 → Z2 by f ′(y) = y(
mod 2) for y ∈ Z6

I the sequence splits on the left

I g(y) = 2y (mod 3) for y ∈ Z6

I let g′ : Z3 → Z6 by g′(z) = 2z
for z ∈ Z3

I the sequence splits on the right
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An Example of a Splitting Sequence

We know the sequence splits, so there is a commutative
diagram of the form

0 Z2 Z2 ⊕ Z3 Z3 0

0 Z2 Z6 Z3 0
f g

φ

where φ is an isomorphism.
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The Fundamental Theorem of Finitely Generated
Modules Over Principal Ideal Domains

Suppose R is a PID and M is a finitely generated R-module.
Then M is isomorphic to the direct sum of cyclic R-modules,

M ∼= R/〈d1〉 ⊕R/〈d2〉 ⊕ · · · ⊕R/〈dn〉

where the 〈di〉 are ideals of R such that
〈dn〉 ⊂ 〈dn−1〉 ⊂ · · · ⊂ 〈d1〉 and di|di+1 for 1 ≤ i ≤ n.
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The End

Thank you.
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