# Modules, Splitting Sequences, and Direct Sums 

Maria Ross

Department of Mathematics and Computer Science
University of Puget Sound

May 1, 2017

## Modules Over Rings

## Definition

A left $R$-module $M$ over a ring $R$ is an abelian additive group together with a map $R \times M \rightarrow M$, denoted by $(r, m) \mapsto r m$ that satisfies the following properties for $r, s \in R$ and $m, n \in M$ :

- $(r+s) m=r m+s m$
- $r(m+n)=r m+r n$
- $(r s) m=r(s m)$
- if $1 \in R$, then $1 m=m$


## Module Examples

- Vector Spaces are $F$-modules
- Rings are $R$-modules
- Abelian Groups are $\mathbb{Z}$-modules
- Ideals are
$R$-modules

Matrices over a ring [1]

- $R$ ring, $M_{n}(R)$ set of $n \times n$ matrices over $R$
- $R$ acts on $M_{n}(R)$ by scalar multiplication, $r \mapsto r A$ for $r \in R$ and $A \in M_{n}(R)$
- $M_{n}(R)$ is an $R$-module


## Basic Properties

## Proposition

Consider a ring $R$ and an $R$-module $M$. Then, for $r \in R$ and $m \in M$,

- $(r) 0_{M}=0_{M}$
- $\left(0_{R}\right) m=0_{M}$
- $(-r) m=-(r m)=r(-m)$
- $(n r) m=n(r m)=r(n m)$ for all $n \in \mathbb{Z}$.


## Submodules

## Definition

A non-empty subset $N$ of an $R$-module $M$ is a submodule if for every $r, s \in R$ and $n, l \in N$, we have that $r n+s l \in N$.

- $R$ ring of integers with ideal $6 \mathbb{Z} \Rightarrow 6 \mathbb{Z}$ is a $\mathbb{Z}$-module
- $12 \mathbb{Z}$ subset of $6 \mathbb{Z}$
- $x, y \in 12 \mathbb{Z} \Rightarrow x=12 q$ and $y=12 r$ for some $q, r \in \mathbb{Z}$
- $a x+b y=a(12 q)+b(12 r)=12(a q)+12(b r)=$ $12(a q+b r) \in 12 \mathbb{Z}$
- So, $12 \mathbb{Z}$ is a submodule of $6 \mathbb{Z}$


## Module Homomorphisms

## Definition

If $M$ and $N$ are $R$-modules, a module homomorphism from $M$ to $N$ is a mapping $f: M \rightarrow N$ so that
(i) $f(m+n)=f(m)+f(n)$
(ii) $f(r m)=r f(m)$
for $m, n \in M$ and $r \in R$.

## Quotient Structures

## Proposition

Suppose $R$ is a ring, $M$ an $R$-module, and $N$ a submodule of $M$. Then $M / N$, the quotient group of cosets of $N$, is an $R$-module.

## Quotient Structures

## Proof.

- $M / N$ is an additive abelian group
- Define the action of $R$ on $M / N$ by $(r, m+N) \mapsto r m+N$
- By coset operations, for $r, s \in R$ and $m+N, l+N \in M / N$,
(i) $(r+s)(m+N)=r(m+N)+s(m+N)=(r m+N)+(s m+N)$
(ii) $r((m+N)+(l+N))=r(m+l+N)=r m+r l+N=$ $(r m+N)+(r l+N)$
(iii) $(r s)(m+N)=(r s m+N)=r(s m+N)$
(iv) if $1 \in R$, then $1(m+N)=1 m+N=m+N$.


## Direct Sum of Modules

- I set of indices (finite or infinite)
- A family $\left(x_{i}, i \in I\right)$ is a function on $I$ whose value at $i$ is $x_{i}$


## Definition [8]

The external direct sum of the modules $M_{i}$ for $i \in I$ is $\bigoplus_{i \in I} M_{i}$, all families $\left(x_{i}, i \in I\right)$ with $x_{i} \in M_{i}$ such that $x_{i}=0$ for all except finitely many $i$.

- Addition defined by $\left(x_{i}\right)+\left(y_{i}\right)=\left(x_{i}+y_{i}\right)$
- Scalar multiplication defined by $r\left(x_{i}\right)=\left(r x_{i}\right)$


## Direct Sum of Modules

- For finite $I$, direct sum corresponds to direct product
- $M, N$ are $R$-modules. Then

$$
M \oplus N=\{(m, n) \mid m \in M, n \in N\}
$$

- Example: Let $M=\mathbb{Z}_{2}$ and $N=\mathbb{Z}_{3}$ be $\mathbb{Z}$-modules, then

$$
M \oplus N=\mathbb{Z}_{2} \oplus \mathbb{Z}_{3}=\{(0,0),(0,1),(0,2),(1,0),(1,1)(1,2)\}
$$

Then $\mathbb{Z}_{2} \oplus \mathbb{Z}_{3} \cong \mathbb{Z}_{6}$.

## Internal Direct Sum

- $R$-module $M$ with submodules $M_{1}, M_{2}$
- $M$ is the internal direct sum of $M_{1}$ and $M_{2}$ if $M=M_{1}+M_{2}$ and $M_{1} \cap M_{2}=0$
- Internal direct sum is isomorphic to external direct sum
- A direct decomposition of $M$ is $M_{1} \oplus M_{2}$ where $M \cong M_{1} \oplus M_{2}$
- $M$ is indecomposable if $M \not \equiv M_{1} \oplus M_{2}$ for $M_{1}, M_{2} \neq 0$


## Free Modules and Cyclic Modules

- Modules with bases are called free
- $M$ is a free module, then the rank of $M$ is the number of elements in its basis
- An $R$-module $M$ is cyclic if $\exists a \in M$ so $M=a R$


## Proposition

A free $R$-module $M$ is isomorphic to the direct sum of "copies" of $R$.

## Free Modules

## Example

Let $M$ and $N$ be free modules over $\mathbb{Z}$, with bases $B_{M}=\left\{\left[\begin{array}{l}1 \\ 0\end{array}\right],\left[\begin{array}{l}0 \\ 1\end{array}\right]\right\}$ and $B_{N}=\left\{\left[\begin{array}{l}2 \\ 0\end{array}\right],\left[\begin{array}{l}0 \\ 2\end{array}\right]\right\}$. Then, $M=\left\{\left[\begin{array}{l}a \\ b\end{array}\right]: a, b \in \mathbb{Z}\right\}$, and $N=\left\{\left[\begin{array}{c}2 a \\ 2 b\end{array}\right]: a, b \in \mathbb{Z}\right\}$. If $M$ and $N$ were vector spaces, they would be isomorphic. However, because our scalar multiples are from a ring that does not have multiplicative inverses, $N$ has no vectors with odd-parity entries. Thus, $M$ and $N$ are not isomorphic.

## Torsion

Let $R$ be an integral domain and $M$ be an $R$-module:

- $x \in M$ is a torsion element if $r x=0$ for $r \in R, r \neq 0$
- $T$, the set of all torsion elements of $M$, is a submodule of $M$
- $T$ is called the torsion submodule of $M$
- if $T=M, M$ is a torsion module
- if $T=\{0\}, M$ is torsion free


## Torsion Modules

## Theorem [5]

Let $T$ be a finitely generated torsion module over a PID $R$, and $\left\langle a_{i}\right\rangle$ ideals of $R$. Then $T$ is isomorphic to the direct sum of cyclic torsion $R$-modules; that is,

$$
T \cong R /\left\langle a_{1}\right\rangle \oplus \cdots \oplus R /\left\langle a_{m}\right\rangle
$$

for some $m$ and nonzero $a_{i} \in R$.

## Torsion Modules

## Theorem

[5] If $R$ is a PID, then every finitely generated $R$-module $M$ is isomorphic to $F \oplus T$ where $F$ is a finite free $R$-module and $T$ is a finitely generated torsion $R$-module, which is of the form $T \cong \bigoplus_{j=i}^{m} R /\left\langle a_{j}\right\rangle$.

## Exact Sequences

Suppose $R$ is a ring, $M_{1}$, and $M_{2}, M_{3}$ are $R$-modules.
A sequence of module homomorphisms

$$
M_{1} \xrightarrow{f_{1}} M_{2} \xrightarrow{f_{2}} M_{3}
$$

is exact if $\operatorname{im}\left(f_{1}\right)=\operatorname{ker}\left(f_{2}\right)$.

## Short Exact Sequences

An exact sequence of the form

is called a short exact sequence.

- $f_{1}$ is injective
- $f_{2}$ is surjective


## Examples of Short Exact Sequences

For any $R$-module $M$ with submodule $N$, there is a short exact sequence

$$
0 \longrightarrow N \xrightarrow{f_{1}} M \xrightarrow{f_{2}} M / N \longrightarrow 0
$$

- $f_{1}: N \rightarrow M$ defined by $f_{1}(n)=n$
- $f_{2}: M \rightarrow M / N$ defined by $f_{2}(m)=m+N$


## Examples of Short Exact Sequences

For ideals $I$ and $J$ of a ring $R$ such that $I+J=R$, there is a short exact sequence


- $f_{1}: I \cap J \rightarrow I \oplus J$ is the map $f_{1}(x)=(x,-x)$
- $f_{2}: I \oplus J \rightarrow R$ is addition where $\operatorname{ker}\left(f_{2}\right)=\{(x,-x) \mid x \in I \cap J\}$


## Examples of Short Exact Sequences

$L$ and $M$ are $R$-modules with direct sum $L \oplus M$. There is a short exact sequence


- $f_{1}: L \rightarrow L \oplus M$ is the embedding of $l \in L$ into $L \oplus M$
- $f_{2}: L \oplus M \rightarrow M$ is the projection of $x \in L \oplus M$ onto $M$, so that $f_{2}\left(f_{1}(l)\right)=0$ for $l \in L$


## Splitting Sequences

## Definition [8]

A short exact sequence

$$
0 \longrightarrow M_{1} \xrightarrow{f_{1}} M_{2} \xrightarrow{f_{2}} M_{3} \longrightarrow 0
$$

is said to split on the right if there is a homomorphism $g_{2}: M_{3} \rightarrow M_{2}$ so that the function composition $f_{2} \circ g_{2}=1$. The sequence splits on the left if there is a homomorphism $g_{1}: M_{2} \rightarrow M_{1}$ so that $f_{1} \circ g_{1}=1$. A sequence that splits on the left and the right splits, and is called a splitting sequence.

## The Five Lemma

Consider the following commutative diagram where both sequences of homomorphisms are exact:



- $h_{1}$ surjective
- $h_{2}, h_{4}$ bijective

$\Rightarrow \quad$| $h_{3}$ is an |
| :--- |
| isomorphism. |

- $h_{5}$ injective


## The Five Lemma Proof

Claim 1. If $h_{2}$ and $h_{4}$ are surjective and $h_{5}$ is injective, then $h_{3}$ is surjective.


- $x \in L_{3} \Rightarrow g_{3}(x) \in L_{4} \Rightarrow g_{3}(x)=h_{4}(y)$ for $y \in M_{4}$
- $g_{4}\left(g_{3}(x)\right)=g_{4}\left(h_{4}(y)\right)=0$
- $g_{4}\left(h_{4}(y)\right)=h_{5}\left(f_{4}(y)\right) \Rightarrow g_{4}\left(g_{3}(x)\right)=h_{5}\left(f_{4}(y)\right)=0$
- $h_{5}\left(f_{4}(y)\right)=0 \Rightarrow f_{4}(y) \in \operatorname{ker}\left(h_{5}\right) \Rightarrow f_{4}(y)=0$.
- $y \in \operatorname{ker}\left(f_{4}\right)=\operatorname{im}\left(f_{3}\right) \Rightarrow y=f_{3}(a)$ for some $a \in M_{3}$.


## The Five Lemma Proof



- $g_{3}(x)=h_{4}(y)=h_{4}\left(f_{3}(a)\right)=g_{3}\left(h_{3}(a)\right) \Rightarrow x-h_{3}(a) \in \operatorname{ker}\left(g_{3}\right)=\operatorname{im}\left(g_{2}\right)$
- $x-h_{3}(a)=g_{2}(b)$ for $b \in L_{2}$
- $b=h_{2}(m)$ for $m \in M_{2}$, and
$x-h_{3}(a)=g_{2}(b)=g_{2}\left(h_{2}(m)\right)=h_{3}\left(f_{2}(m)\right)$
- $x-h_{3}(a)=h_{3}\left(f_{2}(m)\right) \Rightarrow x=h_{3}\left(a+f_{2}(m)\right)$
- $x \in \operatorname{im}\left(h_{3}\right) \Rightarrow h_{3}$ is surjective.


## The Five Lemma Proof

Claim 2. If $h_{2}$ and $h_{4}$ are injective and $h_{1}$ is surjective, then $h_{3}$ is injective.


- $a \in \operatorname{ker}\left(h_{3}\right) \Rightarrow h_{4}\left(f_{3}(a)\right)=g_{3}\left(h_{3}(a)\right)=g_{3}(0)=0$
- $f_{3}(a)=0 \Rightarrow a \in \operatorname{ker}\left(f_{3}\right)=\operatorname{im}\left(f_{2}\right) \Rightarrow a=f_{2}(z)$ for $z \in M_{2}$
- $0=h_{3}(a)=h_{3}\left(f_{2}(z)\right)=g_{2}\left(h_{2}(z)\right) \Rightarrow h_{2}(z) \in \operatorname{ker}\left(g_{2}\right)=\operatorname{im}\left(g_{1}\right)$
- $h_{2}(z)=g_{1}(u), u=h_{1}(v) \Rightarrow h_{2}(z)=g_{1}\left(h_{1}(v)\right)=h_{2}\left(f_{1}(v)\right)=h_{2}(z)$
- $z=f_{1}(v) \Rightarrow a=f_{2}\left(f_{1}(v)\right)=0 \Rightarrow h_{3}$ is injective.


## The Short Five Lemma

We consider a commutative diagram of short exact sequences, as below:


It follows directly from The Five Lemma that if $h_{1}$ and $h_{3}$ are isomorphisms, so is $h_{2}$.

## Theorem [6]

Let $R$ be a ring, and let $M, N$, and $P$ be $R$-modules, with a short exact sequence of the form


Then, the following are equivalent:
(i) There is a homomorphism $f^{\prime}: M \rightarrow N$ so that $f^{\prime}(f(n))=n$ for all $n \in N$; the sequence splits on the left.
(ii) There is a homomorphism $g^{\prime}: P \rightarrow M$ so that $g^{\prime}(g(p))=p$ for all $p \in P$; the sequence splits on the right.
(iii) There is an isomorphism $\phi: M \rightarrow N \oplus P$, and the sequence splits.

We can illustrate this theorem by applying The Five Lemma to the commutative diagram


Then, we can see that $M \cong N \oplus P$, and we have some insight into the structure of the original exact sequence. We can regard $f$ as the embedding of $N$ into $M$, and $g$ as the projection of $M$ onto $P$.

## An Example of a Splitting Sequence

Consider the example from earlier with $\mathbb{Z}$-modules $\mathbb{Z}_{2}$ and $\mathbb{Z}_{3}$. There is a short exact sequence


- $f(x)=3 x$ for $x \in \mathbb{Z}_{2}$
- let $f^{\prime}: \mathbb{Z}_{6} \rightarrow \mathbb{Z}_{2}$ by $f^{\prime}(y)=y($ $\bmod 2)$ for $y \in \mathbb{Z}_{6}$
- the sequence splits on the left
- $g(y)=2 y(\bmod 3)$ for $y \in \mathbb{Z}_{6}$
- let $g^{\prime}: \mathbb{Z}_{3} \rightarrow \mathbb{Z}_{6}$ by $g^{\prime}(z)=2 z$ for $z \in \mathbb{Z}_{3}$
- the sequence splits on the right


## An Example of a Splitting Sequence

We know the sequence splits, so there is a commutative diagram of the form

where $\phi$ is an isomorphism.

## The Fundamental Theorem of Finitely Generated Modules Over Principal Ideal Domains

Suppose $R$ is a PID and $M$ is a finitely generated $R$-module. Then $M$ is isomorphic to the direct sum of cyclic $R$-modules,

$$
M \cong R /\left\langle d_{1}\right\rangle \oplus R /\left\langle d_{2}\right\rangle \oplus \cdots \oplus R /\left\langle d_{n}\right\rangle
$$

where the $\left\langle d_{i}\right\rangle$ are ideals of $R$ such that
$\left\langle d_{n}\right\rangle \subset\left\langle d_{n-1}\right\rangle \subset \cdots \subset\left\langle d_{1}\right\rangle$ and $d_{i} \mid d_{i+1}$ for $1 \leq i \leq n$.

## The End



- Mom, why my cousin Diamond is named like that?
- Because your aunty loves diamonds
- What about me?
- Enough questions Fundamental theorem for finitely generated modules over a principal ideal domain


## Thank you.

## Bibliography I

圕 Benson Farb and R．Keith Dennis．Graduate Texts in Mathematics：Noncommutative Algebra．Springer－Verlag， 1993.

目 Ivan Fesenko．Rings and Modules．University of Nottingham． https：／／www．maths．nottingham．ac．uk／personal／ibf／als3／leno．pdf
E James P．Jans Rings and Homology．Holt，Rinehart and Winston，Inc． 1964.

围 J Prasad Senesi．Modules Over a Principal Ideal Domain． University of California，Riverside． http：／／math．ucr．edu／prasad／PID\％20mods．pdf

## Bibliography II

围 Keith Conrad. Modules Over a PID. University of Connecticut.
http://www.math.uconn.edu/ kconrad/blurbs/linmultialg/modulesoverPID.pdf
䍰 Keith Conrad. Splitting of Short Exact Sequences for Modules. University of Connecticut. http://www.math.uconn.edu/ kconrad/blurbs/linmultialg/splittingmodules.pdf

Reonard Evens. A Graduate Algebra Text. Northwestern University, 1999. http://www.math.northwestern.edu/ len/d70/chap5.pdf

## Bibliography III

囯 Robert B．Ash．Abstract Algebra：The Basic Graduate Year．University of Illinois at Urbana－Champaign． http：／／www．math．uiuc．edu／r－ash／Algebra／Chapter4．pdf

固 Robert Wisbauer．Foundations of Module and Ring Theory． Gordon and Breach Science Publishers，Reading， 1991. http：／／reh．math．uni－duesseldorf．de／wisbauer／book．pdf
國 Sean Sather－Wagstaff．Rings，Modules，and Linear Algebra． North Dakota State University， 2011.

