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1 Introduction

The most beautiful result in all of physics is Noether’s theorem; symmetries imply
conservation laws. This result has informed our understanding of all of physics,
from quantum field theory to general relativity and every domain in between
[1]. The focus on symmetry in physics reflects on current research; to this day
physicists are still working on Lie groups and their relation to the fundamental
laws of nature. Symmetries provide the basis of our understanding of particle
theory and led to the discovery of the Higg’s boson [2]. Lie groups are a natural
extension to standard group theory. Lie groups are infinite and there is a group
element for each value of a continuous parameter [3]. Lie groups correspond to the
symmetries of smooth surfaces [4]. The surface Noether’s theorem cares about is
the Lagrangian, which is the basis of Lagrangian mechanics.

Lagrangian mechanics is an alternative to the Newtonian formulation of the
laws of physics. The Lagrangian is a function of the state of the system, which can
then be used to determine the behavior of the system. The Lagrangian is itself a
smooth surface, so we can use Lie groups to characterize the symmetries of the
Lagrangian, which then neatly leads to Noether’s theorem [1].

2 Lie Groups

Lie groups are infinite, continuous groups that represent the symmetries of dif-
ferentiable manifolds [5]. While finite groups represent the discrete symmetries of
objects such as regular polygons, Lie groups extend the language of group theory
to the symmetries of objects such as spheres and hyperbolic paraboloids. The abil-
ity to formalize continuous symmetries will be invaluable when we try to explore
the symmetries of the laws of physics [1].

2.1 Differentiable Manifolds

Before we can define Lie algebras, we must define the objects they act on. Man-
ifolds are collection of points, and differentiable manifolds are the special case
where the manifold looks flat around every point.
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Figure 1: The manifold on the left is non-differentiable because there are points whose
local area cannot be approximated as a plane. On the other hand, the manifold on the
right is differentiable because every region can be approximated by a tangent line [6].

Definition 2.1 (Differentiable Manifold). A differentiable manifold is a set of
points in N-dimensional space connected in such a way that the set is smooth.
Because they are smooth, differentiable manifolds approximate n-dimensional, for
n less than N, Cartesian space around each point in the differentiable manifold
[5].

In other words, differentiable manifolds are sets of points that are nice—there
are no discontinuities or sharp points, and each point has neighbors arbitrarily
close to it. Some examples of differentiable manifolds are

e the Cartesian spaces R" and C"

e the n-dimensional sphere > " | #? = r? embedded in R"

e any smooth surface {(z1,z2,...,2,) | x, = f(x1,29,...,25-1)} embedded
in R"™ or C™ [5].
For counterexamples, we can turn to the set of points defined by y = |z| or

fractals such as the Koch snowflake or Sierpinski gasket. The differences between
differentiable and non-differentiable manifolds can be seen in Figure 1.

Because they are smooth, we can treat the area around a point in a differen-
tiable manifold as we would the Cartesian space R™ [5]. For example, the surface
of a sphere in R3 approximates R?. Thus, so long as we only care about the be-
havior of the differentiable manifold close to a point, the differentiable manifold
is easy to describe—it is just our familiar Cartesian space!

2.2 Defining Lie Groups

Lie groups are defined to be groups of symmetries on differentiable manifolds
where the symmetries are themselves differentiable with respect to some parame-
ter € [3, 7]. While groups such as dihedral or symmetric groups have finitely many
elements, Lie groups have an infinite number of elements—one for each value of
the continuous variable e.



Definition 2.2 (Lie Group). A Lie group is a set G = {I'c} of smooth transfor-
mations I'c : M — M of a differentiable manifold M that depends on a continuous
and sufficiently small parameter e. Furthermore, I'y is the identity operation and
group multiplication is defined by I',I'g = T'n45 [3, 7).

Lie symmetries take points on a differentiable manifold to other points on the
same differentiable manifold.

For example, the complex unit circle, which is the set of points {e? | t € R},
has rotational symmetry, meaning that any rotation of the circle through an angle
¢ leaves the set that makes up the circle unchanged. Thus, we define a Lie group

G={Ty|Tyle) =€ -, ¢ € R}

that rotates the unit circle in the complex plane. Namely, F¢(eit) = ¢t . e =
¢!(t+9) We can check that G satisfies the conditions to be a Lie group. First note
that To(z) = €® -2 = z so [y is the identity element. Furthermore, I'yI'y(z) =
e?eily = (010 =T 4(2) for all ¢ and 6 in R.

We could reconstruct the same symmetry of the complex unit circle using only
a linear expression in ¢ if we are willing to forgo the transformation being accurate
for all ¢. We achieve this by using Taylor expansions to note that

[ee] . n
¢t = Z(Zf? =1+ip+ O(¢%).

n=0
Thus, for sufficiently small ¢, we can neglect the term O(¢?).2 Thus we can

instead define the above Lie group on a circle as being the group G = {I'y |
I'y(z) = (14+1i¢) -z, ¢ = 0}. This leads us to the idea of infinitesimal generators.

2.3 Infinitesimal Generators

An infinitesimal generator is an element of the Lie group that is infinitesimally
close to the identity operation. Using these generators, we can understand how
Lie groups act on differentiable manifolds locally [7]. In general, we are able to use
the same technique of taking the Taylor series of our transformation and ignoring
all terms of order €2 or greater. Formally, we can write any element of the group

G = {T.} as

_— =, d"T.
= dem

drI'.
de

dl’.
de

€' =T+

e+ O() =Ty + €
for e sufficiently close to 0 [4]. Note that we can reconstruct the entire operation
I'c given the term dg;. Thus, we know everything about the transformation I'c as
long as we know how it acts in vicinity of € = 0. For this reason, we call dclll‘ the
infinitesimal generator of the Lie Group [1].

2The notation O(z™), called “Big ‘O’ Notation”, denotes any expression that is multiplied by
x to the power n or greater. Thus, if  tends to 0 or is generally vanishingly small, we can say
this term is effectively 0.



Definition 2.3 (Generator of a Lie Group). The generator of a Lie group G =
{T} is the function “<. The set {%< ¢ | e ~ 0} is called the tangent algebra of
the differentiable manifold.

The tangent algebra is, as the name would sugest, tangent to the differentiable
manifold. While it is an algebra in its own right, if we want to use the tangent
algebra to talk about the symmetries of the full manifold, we need to keep in mind
that the tangent algebra only approximates the symetries of the full manifold for
transformations close to the identity.

The generator presents two sorts of symmetries, one global and one local. We
say that I'. is a global symmetry of the differentiable manifold if I'. leaves the
differentiable manifold unchanged for all values of €, and that it is a local symmetry
if T'c only preserves the differentiable manifold for small values of €. For local
symmetries, because € must be vanishingly small, we can say that I'c = I'g+ dg; €.
In some sense, local transformations move the differentiable manifold around in
the region that it is locally like the Euclidean space that lies tangent to a point.
This is the reason another name for the group formed by local symmetries is a
tangent algebra [3].

3 Lagrangian Mechanics

Before we are able to use Lie symmetries to derive Noether’s theorem, we must
first take a detour into physics. Lagrangian mechanics are an alternate formulation
of Newtonian physics. While Newton’s laws describe how systems interact, they
are not always the easiest tool to use.? Lagrangian mechanics give the same results
as Newton, but can be significantly easier to use.

3.1 Phase Space

Phase space is the domain of the Lagrangian, and it covers all possible states of the
system [5]. If you have a collection of N particles, then, in our 3-dimensional uni-
verse, you need 3N variables to describe the location of all the particles. Namely,
the z;, y;, and z; values of each particle indexed by i € {1,2,..., N}. For the sake
of compactness, instead of using x;, y;, and z; to denote the location of a particle,
we will use the generalized coordinate ¢; for ¢ € {1,2,...,3N} [5]. This notation
has the benefit that we are no longer confined to Cartesian coordinates, and are
free to use any coordinate system we choose to use. The space described by these
coordinates is called the configuration space.

However, given that Newton’s second law is a second order differential equa-
tion, knowing the position of the system in configuration space is not enough to

3 A typical example of this problem is the behavior of a satellite orbiting the Earth. Attempting
to use Newton’s laws results in needing to solve three linked and non-linear partial differential
equations. However, if we instead use the Lagrangian formalism, the equations of motion quickly
reduce to a single partial differential equation, which is much less frightening [8].
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Figure 2: Depictions of the motion of a damped harmonic oscillator in configuration space
(left) and phase space (right). Note the differences in the sort of axes; in configuration
space, we deal with position versus time while in phase space, we deal with velocity versus
position with the time evolution merely implied by the progression along the curve through
phase space [6].

uniquely characterize all possible states of the system. If you want to know how
long it would take for a ball to hit the ground, it’s not enough to say that it is
5 meters above the ground, you also need to know its initial velocity. Similarly,
to fully understand how any system will evolve in time, we also need informa-
tion about the first time-derivatives of each of the coordinates. Thus, phase space
includes the 3N pairs (g;, ¢;) [5]. As a result, if we have N particles and 3 dimen-
sions, our phase space is 2-3- N dimensional, with half the dimensions describing
objects’ locations and half specifying the objects’ velocities.

Phase space is the set of all possible states of a system, and thus alone it
tells us very little about the behavior of the system it describes. In order to know
how an object behaves, we need its path through phase space as a function of
time (see Figure 2). Using Newton’s laws, this would consist of needing to solve
a set of differential equation and plugging in the initial location in phase space
to compute the behavior of the system. However, a more elegant solution is to
define a function whose domain is the phase space, and whose shortest paths are
the paths a physical system follows.

3.2 The Lagrangian

The Lagrangian is a function £(g;, ¢;,t) for i € {1,...,3N} that, given a specific
time ¢, assigns a real number to each point in phase space (g;, ¢;). As a result, the
Lagrangian is a differentiable manifold in the 6V + 2-dimensional space described
by the phase space (dimension 6 N') combined with one dimension each for the time
axis and the value of the Lagrangian. In classical mechanics, the Lagrangian takes



Figure 8: A contour plot of the Lagrangian of a simple harmonic oscillator. The manifold
is scaled so that the scale on each azis is the same. Distance along the horizontal axis
1s position, while height represents velocities. The darker the region, the smaller the La-
grangian. The circles are allowed paths through phase space, and look like sine functions
in configuration space [6].

the form of the difference between the kinetic energy and the potential energy.
On the other hand, the potential energy function is any function U(g;, ¢;,t) [8].
Thus, symbolically,

The exact definitions of the kinetic and potential energies depend on the specific
physical system.

An example of a physical system that the Lagrangian is well suited for is that
of an N-dimensional simple harmonic oscillator. We are given that

Y1, Y1,
T = Z 3™ and U = Z §kzqi .
i=1 i=1

Thus, using the definition of the Lagrangian, we find that, for a simple harmonic
oscillator, the Lagrangian is

-3

i=1

DO | =

which was nearly painless to calculate [8]. The Lagrangian for the simple harmonic
oscillator, along with the physical paths can be found in Figure 3. While the
Lagrangian is easy to calculate, we still need a way to translate this function into
a path through phase space.



3.3 Shortest Paths

Nature wants to take the shortest route—as defined by the Lagrangian—through
phase space that it can. In other words, nature is lazy. While in our 3-dimensional
universe we are able to define length of a path (z(t),y(t), 2(t)) as being
to
de?  dy?  dz?
Length (z(t),y(t), 2(t)) = [ (= +—= +— )Y2at
ength (a(0).y(6),2(0) = [ (G5 +5 + 5 )

t1

we need a different definition of length for phase space [8]. Here is where the
Lagrangian becomes useful. The length of a path in phase space, otherwise known
as the action S, is defined by adding up all the values of the Lagrangian along
the path. Furthermore, because nature wants to take the shortest path, systems
only take the path through phase space with the least action.

Definition 3.1 (Action). The action of a Lagrangian L(g;,d;,t) along a path
through phase space (g;(t), ¢;(t)) is the quantity

5= / Lla(t), ds(8), 1) dt.

The principle of least action states that physically meaningful paths have the
smallest possible action, or

ds B
d(gi(t), ¢i(t))
The derivative in the principle of least action is not one that we can evaluate
using the normal techniques of differential calculus—there are too many variables

that affect path length! Thus, in order to find the path that satisfies the principle
of least action, we must borrow a result from the calculus of variations.

Theorem 3.1 (Euler-Lagrange Equations). The action of the Lagrangian L is
minimized along the path (¢;(¢), ¢;(¢)) through phase space if and only if

oL ddLq

dq;  dt 0¢

Thus, in order to translate the Lagrangian into a solution, we must solve the
above differential equation for each index 7 [8].

0.

We now see how to find the behavior of a system using Lagrangian mechanics.
First, we choose which coordinates ¢; parametrize the system and how they relate
to kinetic and potential energy. Next we calculate the Lagrangian, and solve the
Euler-Lagrange equations to find the behavior of the system as time progresses.
While this process can be simpler than using Newton’s laws, it would be very nice
if we could coerce the Lagrangian to tell us about the behavior of the system,
even if we are unable to solve the Euler-Lagrange equations.



4 Noether’s Theorem

Noether’s theorem links conservation laws and Lie symmetries [9]. For every Lie
symmetry of the Lagrangian there is a conserved quantity. This theorem is made
possible with the realization that the Lagrangian is a differentiable manifold in
phase-space. Since the Lagrangian is a differentiable manifold, we can easily ask
what the symmetries are. Then, given the symmetries of the Lagrangian, we are
able to find a conserved quantity.

4.1 Symmetries of the Lagrangian

Recall that the Lagrangian £(g;, d;,t) is a differentiable manifold and that Lie
symmetries are operations on differentiable manifolds that preserve the manifold’s
structure. If we have a set of operations I'c that are continuous transformations of
the Lagrangian such that I'.(£) = £, then we have a Lie group on the Lagrangian.
We will find that the existence of such groups implies there are conserved quan-
tities of the system.

If T'.(L£) = L, then we can think of the operation I'. as acting on the domain
of L [7]. Because there is a function equality, the transformation cannot redefine
the function £. Thus, we can write

Fe(ﬁ((ha QZa t)) = E(Ql(qja QJv t7 6), Ql(QJv q]7 ta 6)7 T(QJ? q]7 ta 6))

We have written the Lie symmetry of the Lagrangian in the form of continuous
transformations of each of the variables. Each point in phase space is sent to
another point in phase space.

While the above is true for both global and local symmetries, it would be nice
to have the transformation in a form that is easily applicable to local transforma-
tions. We proceed by the same technique as we used when we first encountered
local symmetries—we will expand each transformation using a Taylor series in e.
Thus, for local symmetries,

Te(L(gi, dist) = L(gi + Gi€, i + Gie, t + Te).
Where (;, ¢, and 7 are defined by
. 0Q;

_ 9Q; G — 6£
N Oe le=0 ! Oe le=0 T Oe 610‘

Gi

Local transformations are much nicer than global transformations—we no longer
need to worry about higher powers of e.

4.2 Rund-Trautman Identity

In order to prove Noether’s theorem, we need to prove an important lemma—the
Rund-Trautman identity.



Theorem 4.1 (The Rund-Trautman Identity). Let I'c be a local transformation
of the Lagrangian I'.(£) = £’ and let S and S’ be the actions of the Lagrangian
L and £’ where

to

t2
S = L(Qiyqiat) dt and S, = El(qi,(ji,t) dt.

t1 t1

Then, if the Lagrangian L is locally invariant under I'¢ to the first order of ¢, or,
in other words, if
£(QZa q.ia t) = FE([’(QH le'a t)) + 0(62)7

then the identity

oL oL . oL )
%CZ""@CZ""ET_IHT—O

holds, where H = :'cig—é — L is called the Hamiltonian. [1, 10]

Proof. If S(gi+Cie,t+7€)—S(g;,t), then S(¢;+ (i€, t+7€)—S(gi, t) =55 =0.
If we go back to the definition of the action as the integral of the Lagrangian and
use the chain rule to collect terms inside a single integral, we write

to

dt’

ki — 2
/ L=~ Ldt = O(€)
t1

While this situation would normally be intractable because the integral is
definite, we never actually defined ¢; or to; they’re arbitrary! Because the bounds
of integration are arbitrary, we can take the integral over any range we desire,
and still require it to evaluate to O(e?). The only integrand for which this holds

is the 0 function. Thus,
dt’
L' — — Ldt = 0.
dt

If we take the partial derivative of this expression with respect to € and evaluate
the result at e = 0, we find that

oL oL . oL oL

S G+ oG+ T (g —L)T=0,

A A T (¢ 0z, )t
which results in the Rund-Trautman identity if we substitute H in for j:ig—xe - L
1, 10]. O

The Rund-Trautman identity provides a differential equation corresponding
to local Lie symmetries of the Lagrangian. Now that we have this relation, it is a
simple step to go from this equation to Noether’s Theorem.



4.3 Noether’s Theorem

We are now able to combine the Rund-Trautman identity and the Euler-Lagrange
equations to derive Noether’s theorem. Recall that the Rund-Trautman identity
tells us about which symmetries the Lagrangian, and thus the action, are invariant
under, and that the Euler-Lagrange equations describe extremal actions [10]. If
we can combine these two theorems, Noether’s theorem falls out.

Theorem 4.2 (Noether’s Theorem). Let I'c is a local symmetry of the La-
grangian. Then, if £ is the Lagrangian, H is the Hamiltonian, we can conclude
that 5 o0

(7CZ - HT) = Oa

ot \ o1,
L

or, in other words, the quantity 5=(; — H7 is conserved.

Proof. Because I, is a symmetry of the Lagrangian, the Rund-Trautman identity

holds. Thus,

oL oL . 0L .
T%CZ‘FT%C‘Z—FET—HT—O

Because we only care about the path over the Lagrangian that is minimal, we
can use the Euler-Lagrange equations and the definition of the Hamiltonian to
simplify the above expression. Thus, because

oL _ OH d oL _ 9 0L
ot ot an Oz, Ot Oy’

we can rewrite the Rund-Trautman identity as

QoL oL, OH

O—EEQJF%Q—ET—HT’
= 5 (59) - 7 ()
- gt(ggig ~ Hr).
Thus the quantity %Ci —HT is conserved and we conclude that Noether’s theorem
holds; symmetries imply conservation laws [1, 10]. O

It is difficult to overstate how impressive this theorem is. The fact that sym-
metries of the laws of nature imply conservation laws is, in some sense, absurd.
There is no hint from the definition of the Lagrangian that this theorem arises
from the laws of physics.
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5 Applications

One of the prototypical examples of conservation laws are the laws of conserva-
tion of energy and of momentum. These conservation laws have practical appli-
cations in all fields of physics. Conservation of energy is the foundation for all of
thermodynamics and without conservation of momentum, it would be practically
impossible to understand collisions. Using Lie symmetries, we can derive these
two conservation laws [11].

5.1 Conservation of Energy

Suppose the Lagrangian £(g;, ¢;,t) is only a function of ¢; and ¢;. In other words,
the Lagrangian is time-invariant. Then the Lagrangian is trivially a symmetry of
the Lie transformation

FG(‘C(qlu qi; t)) - E(qh (ji, t— 6).4
Thus, we find that

_ 0@

Gi = —o0 =29 _y N —

= T = — =
OJe le=0 OJe le=0 O¢ le=0

Given these values of (, C , and 7, we are able to evaluate the expression g—i@ —
‘H7 — F, which we know is conserved. Thus, if the Lagrangian does not depend
on time, the quantity H = .icig—i — L is conserved. Symbolically,

oH 0 ,. 0L
— = (= —-L)=0.
o~ ot iag

In classical mechanics, the Lagrangian is of the form

1
L=T-U= mig" - U(g),

so the Hamiltonian is

oL

0x;
= mad? — (g~ Ular))
= %miq'iz +U(q:)
=T+U.

H=4q —L

Thus, as long as the Lagrangian is time-independent, the Hamiltonian, better
known as the energy, is conserved. This is a spectacular result; the law of conser-
vation of energy stems from systems being time independent [11].

4The factor in front of the e doesn’t actually matter, but the results are both more elegant
and striking if we subtract € instead of adding it.
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5.2 Conservation of Momentum

While the previous result stems from time independence, for our next result, we
shall assume that the Lagrangian does not depend on the position g;. Thus, the
Lie symmetry of the Lagrangian is of the form

Following a similar path as the above derivation, we find the quantities

00 B g_aQi B _or B
G = Oe e:()_1 G = Oe e:O_O 7__86 e:O_O'

Once again, we know that the quantity g—é@ — Hr is conserved, so given 7 = 0
and ( =1,

oL

Oi;
where we define p; to be the generalized momentum. Note that, while conser-
vation of energy concerns a scalar quantity, the conservation of momentum is a
vector quantity because of the subscript letting the momentum point in multiple
directions [11]. These results are impressive—as long as our system is time and
space independent, we can use the laws of conservation of momentum and energy.

Dbi

6 Conclusion

Lie groups are a very powerful tool. Using Noether’s theorem, we find that Lie
symmetries of the Lagrangian imply conserved quantities. Lie symmetries are
powerful because they can describe the symmetries of physical laws. The beauty
of Noether’s theorem is that groups—objects that obey simple rules and are very
much the result of pure mathematics—imply the experimentally verified conser-
vation laws. This connection between pure mathematics and the laws that govern
reality is beautiful.
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