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Introduction: Discrete v. Continuous

> Permutation groups are the language of discrete symmetries.
e The symmetries of a hexagon in the plane are represented by Zg.
> Lie groups allow us to talk about continuous symmetries.

e The symmetries of a circle, on the other hand, cannot be
represented by a finite group.

e We need to develop Lie groups in order to describe them.



Differentiable Manifolds



Differentiable Manifolds

> Differentiable Manifolds are smooth surfaces of arbitrary dimension.
> They can live in C" or R" (but for simplicity, | will use R").
> In the vicinity of any point, the manifold approximates Cartesian space.

> There is a tangent space corresponding to each point.



Examples and Non-Examples

Examples

Non-Examples




coordinates

> It is useful to know where on a manifold we are.

> If we write a manifold X as

X ={x(q1,q2,---,qn)} = {x(a1)},

then we call g; the generalized coordinate.

> If you need n generalized coordinates to define a manifold, then it is
an n dimensional manifold.



Lie Groups




»> A Lie group is a group over a differentiable manifold G.

> The binary operation of the group is defined by the differentiable
function

p:GxG6—=G w(p1, p2) = ps.
»> The operation 1 must be associative and have an identity.
> The inverse of a point is defined by the differentiable function

t:G—=G (p)=p*



Example: Circle (Part 1)

> Points in a circle are points of the form:
o . cos(0)
p(0) = ro (sin(e)) , BeR

> We define multiplication as
#(p(6), p(4)) = p(0 + ¢) \

> The inverse of a point is




Example: Circle (Part 2)

»> Both of these functions are everywhere
differentiable:

0 0 —sin -
551(P(0).p(9) = 25p(0+9) = ro- (RS, AN

with differentiation with respect to ¢ yielding similar

results.
» For inverses,

Tlp0) = o (29 = - (209))




Tangent Algebras




Tangent Algebras

> Because Lie Groups are groups on differentiable manifolds, every
element of the Lie group has a tangent space.

> We can turn each tangent space into a Lie group, with the point
generating the tangent space as the identity.

> This new Lie group is called the tangent algebra of the original Lie
group.

> There is a homomorphism between a Lie group and its tangent group
for points local to the generating point.



Again, but with math

> Formally, if the full Lie group depends on parameters ¢;, then the
tangent algebra to the point p in G is the set

0G
{p+287€;’p8i|€i ER}

> This is identical to doing a Taylor expansion of G and throwing out all
of the higher power terms.

> For compactness, we write

96|
deilp
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More Circles

» For a circle, the line tangent to a point p(f) is the
set: ‘ [N

o (50) + (6 t1eem: NI

> We can define multiplication of points in the

tangent line to be

1'(p'(s), P'(t) = P'(s + 1)

» For small t, p'(t) =~ p(0 + t). \
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Lie Group Actions




Lie Group Actions

> Lie group actions are ways of talking about the symmetries of
manifolds that are not Lie groups.

> If there is a manifold X, then the action of a Lie group G on X is a
differentiable function

a:Gx X=X (g, x) = alg)x

> Each element of the Lie group is a symmetry of the manifold X.

> If x(g;) is a point in the manifold X, then

a(g)x(qi) = x(Qg,i(q;))
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Local Actions

> Just as Lie groups have tangent groups, we can define a local action
of a Lie group on a manifold.

> Recall, the tangent algebra is the set

{P+ZC,'E,' ‘ € € R}.

» The action is

a(g)x =~ Q(Z Giei)x

for g close to the identity of the Lie group.

12



Example: Symmetries of a Paraboloid

> Our Lie group is the group on a circle we have
already defined.
> Our Lie group X is the paraboloid

X={z=x>+y?|x,y €R}.

» We can define the action
X xcos(9)+ysi'n(9)
Oé(P(e))( (xziyz )) = (ycos(i)2+y>;sm(9) )

» The local action is

a(P(E))((XzEYZ)) - (;x;i;) .
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A Side-note: Representation

»> Every finite group is isomorphic to a subgroup of S,,.

»> Every Lie group is isomorphic to a subgroup of GL(n), the group of
n-dimensional invertible matrices.

> For example, the Lie group on a circle is isomorphic to

cos(f) —sin(0)
{<sin(0) cos(f) > |0 €R}.
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Lagrangian Mechanics




Phase Space

rrrrr

rrrrrr

> Phase space is set of all possible states a physical system can be in.

> Half of the coordinates denote the position of particles while the other
half denote the velocities.

> We denote position in phase space as a point (g, ;).
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The Lagrangian

»> The Lagrangian (£(g;, gi, t)) is a function of position in phase space
and in time.

> The Lagrangian is the difference between the kinetic and potential
energies.

> Given a Lagrangian, we can use the Euler-Lagrange equations to find
the evolution of a system in time.

»> The Lagrangian is a differentiable manifold.
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Noether’'s Theorem




The Theorem

> Let G be a Lie group that acts on the Lagrangian L(q;, §;, t).

> If the action of the Lie Group on the Lagrangian is

O{(g)ﬁ(q,, qia t) = E(Qg,l(qjv q_/7 t)a Qél(qj* qj? t)a Tg(qja qj7 t))7
with local symmetry

L(qi + Cie, §i + Cle, t + 7€)

then the quantity g—ﬁ((,' — @;T) + L7 is conserved in time.
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Conservation of Energy

> If the Lagrangian is not a function of time, then it is invariant under a
shift in time.

> Thus(;=0and 7 = —1.
> By Noether's theorem,

oL . oL
8qi(<i_qi7')+£7—* %

g = /L

is conserved.

> This quantity is the energy.
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This document is licensed under a Creative Commons Attribution -
ShareAlike 4.0 International License.

This presentation is set in IATEX, and the theme is metropolis by
Matthias Vogelgesang.

| heavilly used the books:

e Onishchik and Vinberg's Lie Groups and Albegraic Groups
e Neuenschwander's Emmy Noethers Wonderful Theorem

e Jones' Groups, Representations, and Physics
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Questions?
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