Math 290 Name: Ke Dr. Beezer
Exam 6 Fall 2019

Chapter LT

Show all of your work and ezplain your answers fully. There is a total of 100 possible points.

Partial credit is proportional to the quality of your explanation. You may use Sage to row-reduce matrices. No
other use of Sage may be used as justification for your answers. When you use Sage be sure to explain your input
and show any relevant output (rather than just describing salient features).

1. Prove that S is a linear transformation. (15 points)
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2. For the linear transformation S in the previous problem, compute the preimage S+ ([ ]) (15 points)
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3. Consider the linear transformation R from the vector space of 2 x 2 matrices, Maq, to the vector space of
polynomials with largest degreec 3, P3. (20 points)

R: My — P, R([Z 2}) =(—2a—b—5c+d)+(—a—b—4dc)r+ (2b+ Tc+ 3d)z? + (a + b+ 8c+ 4d)a?

(a) Compute the kernel of R, K(R). (|2 (ia(/(\f]\ = 0 tU&' Ux}k ('73(3
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(b) Compute the range of R, R(R)
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(¢} Is R an invertible linear transformation? Why or why not?
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4. Consider the invertible linear transformation T" from the vector space C? to the vector space of polynomials Ps.
Compute an explicit formula. for the inverse of T', the linear transformation 771: Py — C3. (20 points)
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5. Suppose that T: U = V and §: V — W are linear transformations. Prove that the composition of S and T,

SoT, is a linear transformation. (15 points) T— o o LT
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6. Suppose that T: U — V is a linear transformation which has an inverse function,
two properties, and

a linear transformation would require checking two defining properties. Choose one of the
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prove it. (15 points)
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