Math 290 Name: ¥ Dr. Beezer
Exam 3 j Spring 2021
Chapter M

Show all of your work and ezplain your answers fully. There is a total of 100 possible points.

Partial credit is proportional to the quality of your explanation. You may use Sage to row-reduce matrices. No
other use of Sage may be used as justification for your answers. When you use Sage be sure to explain your input
and show any relevant output (rather than just describing salient features).

1. Is the matrix B unitary? Why or why not? (15 points)
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2. Find the solution set of the linear system L£S(A, b) using the inverse of the coefficient matrix. No credit will
be given for solutions obtained by other methods. (15 points)
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3. Consider the matrix A. (40 points)
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(a) Find a linearly independent set S, whose span is the column space of A, (S) = C(A), and whose elements
are each a column of A.
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(b) Find a linearly independent set 7', whose span is the column space of A, (T') = C(A), by using the matrix
L from the extended echelon for @ 31
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(c) Find a linearly independent set R, whose span is the column space of A, (R) = C(A), by using theorems

about the row space of a matrix. 60 - 1M v o &
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(d) Find a linearly independent set U, whose span is the row space of A, (U) = R(A).
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(e) Construct a nonzero vector b from one of the sets S, T', R, U (your choice, but say which you are using)
and explain how you know that £LS(A, b) has a solution (without simply solving the system).
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4. Suppose that A is an m x n matrix, and O, x, and Oy, x, are zero matrices of the indicated sizes. Give a careful
proof that AO,xp = Omxp. (15 points)
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5. Suppose that A is a nonsingular matrix. Prove that £LS(A, b) has a unique solution by first assuming there
are two solutions (Proof Technique U), and also using a representation of the system with a matrix-vector

product (Theorem SLEMM). Full-credit requires following these suggestions, so in particular, do not simply
quote existing therorems to provide a simple one-line proof. (15 points)
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