
Math 390 Problem List
Spring 2021, University of Puget Sound

Prof. Beezer

“You will get as much out of this course as you put into it.”
—RAB

Dates roughly correlate the material for that day’s class session to the content
or purpose of the exercise. See the online course calendar for an indication of
material covered.
Exercise 1 (January 19). The vector space axiom, 1x = x, is necessary.
Meaning it cannot be derived/inferred from the other nine axioms. Proof: work
FCLA Exercise VS.M10.
Exercise 2 (January 21). Let M24 be the set of all 2× 4 matrices.
(a) Endow M24 with “natural” definitions of vector equality, vector addition,

and scalar multiplication. (What would these be?) Prove that the result
is a vector space.

(b) Consider the subset of W consisting of matrices[
a b c d

e f g h

]
such that

a+ b− c+ 3f − g − h = 0

a+ b− c− e+ 2f + 2g − h = 0

b− 4c+ 5d+ 2e+ 4f − 6g = 0.

Prove that W is a subspace of M24.

(c) Compute the dimension of W .

(d) Construct a linearly independent subset of W with four vectors that does
not span W .

(e) Construct a basis of W that is substantially different from the one you
used to determine the dimension.

(f) Construct a linearly dependent subset of W that also spans W .

Exercise 3 (January 22). We discussed in class that preimages form a
partition of the domain of a linear transformation. In Abstract Algebra an
important principle is that every partition gives rise to an equivalence relation,
and vice versa. Matrix similarity is an equivalence relation, and this is a topic
in FCLA (link in these exercises) so you have already seen that. Exercise Group
LT.T30–LT.T31 explores these ideas in a different order.

http://linear.pugetsound.edu/fcla/section-VS.html#exercise-VS-M10
http://linear.pugetsound.edu/fcla/section-LT.html#exercise-LT-T30
http://linear.pugetsound.edu/fcla/section-LT.html#exercise-LT-T31


Exercise 4 (January 22). Consider the linear transformation, T : P4 → C5

defined by

T
(
a+ bx+ cx2 + dx3 + ex4

)
=


b− c+ 7e

−a− 4c+ d+ 6e

a+ 5c− d− 8 e

−a− 7c+ 2d+ 7e

−b+ c− 6e

 .

(a) Prove that T is invertible (without using a matrix representation).

(b) Compute a formula for an output of the inverse linear transformation
(without using a matrix representation). In other words, find an expres-

sion for the right-hand side of T−1



u

v

w

x

y


 =.

(c) Compose T and T−1 (in both orders) to verify that you get the correct
identity linear transformation in each case. (Why are there two different
identity linear transformations in this problem?)

Exercise 5 (January 22). Work IVLT.M50 in the style of our example in
class.
Exercise 6 (January 25). E is a basis for C3, and F is a basis for P1, the
vector space of polynomials with degree at most 1. Find the matrix represen-
tation of T relative to E and F .

T : C3 → P1, T

ab
c

 = (a− b+ 2c) + (3a+ b+ c)x

E =


11
0

 ,

34
4

 ,

34
5

 F = {1 + x, 3 + 4x}

Solution. Find the key for Exam R for 290 Spring 2019.
Exercise 7 (January 28). The following computational exercises have been
adapted for Math 390. Statements are sometimes adjusted, and solutions are
always 390-specific.

• FCLA Exercise EE.C19

• FCLA Exercise EE.C27

• FCLA Exercise EE.M60
Exercise 8 (January 28). The following exercises are about triangular
matrices, and are new in FCLA.

• FCLA Exercise MO.M10

• FCLA Exercise MO.T25

• FCLA Exercise MM.T28

• FCLA Exercise MINM.T50
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http://linear.pugetsound.edu/fcla/section-IVLT.html#exercise-IVLT-M50
http://linear.pugetsound.edu/390/section-EE.html#exercise-EE-C19
http://linear.pugetsound.edu/390/section-EE.html#exercise-EE-C27
http://linear.pugetsound.edu/390/section-EE.html#exercise-EE-M60
http://linear.pugetsound.edu/390/section-MO.html#exercise-MO-M10
http://linear.pugetsound.edu/390/section-MO.html#exercise-MO-T25
http://linear.pugetsound.edu/390/section-MM.html#exercise-MM-T28
http://linear.pugetsound.edu/390/section-MINM.html#exercise-MINM-T50


Exercise 9 (February 1). FCLA Exercise IS.C11

Exercise 10 (February 1). Verify that A is singular, and thus zero is an
eigenvalue. Compute the generalized eigenspace of this eigenvalue. Come back
later and apply Theorem GEB and concoct an argument that zero is the only
eigenvalue of A. What is the rather surprising thing you discover about this
matrix in the course of finding its generalized eigenspace?

A =



0 3 0 −2 −2 −2 1

6 1 6 1 −5 2 3

−2 −3 −2 2 4 1 −2

4 1 4 0 −4 1 2

−1 −1 −1 1 2 0 −1

6 1 6 1 −5 2 3

−4 −3 −4 1 5 0 −3


A = matrix(QQ, [
[ 0, 3, 0, -2, -2, -2, 1],
[ 6, 1, 6, 1, -5, 2, 3],
[-2, -3, -2, 2, 4, 1, -2],
[ 4, 1, 4, 0, -4, 1, 2],
[-1, -1, -1, 1, 2, 0, -1],
[ 6, 1, 6, 1, -5, 2, 3],
[-4, -3, -4, 1, 5, 0, -3]
])

Exercise 11 (February 5). FCLA Exercise SD.M60 is the same as the Sage
worksheet from class. Do it over by using vectors for x⃗2 and x⃗4 that you think
nobody else from class will use. Full credit if you have correct vectors and
nobody else uses them. Use sage_input(S) to duplicate your similarity matrix
and email it to me.
Exercise 12 (February 5). FCLA Exercise SD.M61 will take some creativity
and experimentation, but will make the material on Jordan canonical form
much easier to understand.
Exercise 13 (February 11). FCLA Exercise CB.C40 will provide a good
review and consolidate our transition to a linear transformation point of view.
Study Example ELTT for hints, rather than using the provided solution.
Exercise 14 (February 12). See three exercises in SCLA about computing
complements and orthogonal complements.

• SCLA 1.3.3

• SCLA 1.3.4

• SCLA 1.3.9

• SCLA 1.3.10
Exercise 15 (February 15). FCLA Exercise MR.T80 is absolutely funda-
mental. Please bring it up during one of our problem sessions.
Exercise 16 (February 15). In class we derived the main formula of The-
orem EMP from a very natural idea: composition of linear “morphisms” (aka
linear transformations). Suppose that we therefore feel that this entry-by-
entry expression for the result of matrix multiplication should be taken as our
definition of matrix multiplication. In FCLA, Definition MM defines matrix
multiplication as repeated matrix-vector products (linear combinations, really).
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http://linear.pugetsound.edu/390/section-IS.html#exercise-IS-C11
http://linear.ups.edu/390/section-CP.html#theorem-GEB
http://linear.pugetsound.edu/390/section-SD.html#exercise-SD-M60
http://linear.pugetsound.edu/390/section-SD.html#exercise-SD-M61
http://linear.ups.edu/390/section-CB.html#exercise-CB-C40
http://linear.ups.edu/390/section-CB.html#example-ELTT
http://buzzard.ups.edu/scla2021/section-orthogonal-complements.html#exercise-3d-complements
http://buzzard.ups.edu/scla2021/section-orthogonal-complements.html#exercise-5d-complements
http://buzzard.ups.edu/scla2021/section-orthogonal-complements.html#exercise-orthogonal-complement-3D
http://buzzard.ups.edu/scla2021/section-orthogonal-complements.html#exercise-orthogonal-complements
http://linear.pugetsound.edu/fcla/section-MR.html#exercise-MR-T80


Convert Definition MM to a theorem, and then prove this result as a conse-
quence of our new (entry-by-entry) definition of matrix multiplication.

Exercise 17 (February 22, 23,25). Consider the linear transformation
T : C12 → C12 given by T (x⃗) = Ax⃗ with

A =



4 −18 −11 33 −24 11 −18 20 20 −10 −4 −1

−3 13 6 −24 13 −4 12 −15 −13 3 5 −1

0 20 −3 −4 19 −23 7 −7 −28 16 −7 13

0 13 −5 7 11 −17 1 −1 −20 14 −8 12

0 11 −9 15 7 −16 −3 3 −19 13 −10 14

0 2 −9 24 −4 −8 −9 9 −7 7 −10 11

−2 −4 3 3 1 −2 −2 2 3 2 −2 1

−5 29 12 −45 37 −23 25 −28 −34 15 4 5

0 −21 1 8 −21 23 −9 9 28 −16 6 −12

0 −16 5 −2 −15 20 −3 3 24 −14 8 −13

0 23 1 −19 27 −23 14 −14 −30 17 −2 9

3 −18 −12 39 −20 5 −20 23 16 −4 −9 4



.

The following exercise will go from linear transformation to Jordan canonical
form in steps.
matrix(QQ, [
[ 4, -18, -11, 33, -24, 11, -18, 20, 20, -10, -4, -1],
[-3, 13, 6, -24, 13, -4, 12, -15, -13, 3, 5, -1],
[ 0, 20, -3, -4, 19, -23, 7, -7, -28, 16, -7, 13],
[ 0, 13, -5, 7, 11, -17, 1, -1, -20, 14, -8, 12],
[ 0, 11, -9, 15, 7, -16, -3, 3, -19, 13, -10, 14],
[ 0, 2, -9, 24, -4, -8, -9, 9, -7, 7, -10, 11],
[-2, -4, 3, 3, 1, -2, -2, 2, 3, 2, -2, 1],
[-5, 29, 12, -45, 37, -23, 25, -28, -34, 15, 4, 5],
[ 0, -21, 1, 8, -21, 23, -9, 9, 28, -16, 6, -12],
[ 0, -16, 5, -2, -15, 20, -3, 3, 24, -14, 8, -13],
[ 0, 23, 1, -19, 27, -23, 14, -14, -30, 17, -2, 9],
[ 3, -18, -12, 39, -20, 5, -20, 23, 16, -4, -9, 4]
])

(a) Compute the eigenvalues of T from the simplest possible matrix repre-
sentation.

(b) Compute the kernels of the powers of T − λI and determine the index of
each eigenvalue. Continue to compute in Sage with the “obvious” matrix
representation you are already using.

(c) Compute the generalized eigenspace of each eigenvalue. Use the algebraic
multiplicities to be sure you have not missed any eigenvalues.

(d) Compute the Jordan canonical form purely as a combinatorial exercise,
based on the dimensions of the kernels of the powers above.

(e) Compute Jordan chains (generalized eigenvectors) which together form
a basis of C12 and provide a basis for a matrix representation in Jordan
canonical form.

(f) Perform the similarity transformation (matrix operation) that verifies the
correctness of your answer to the previous part.

4



Exercise 18 (February 26). The Sage worksheet from class left the eigen-
value λ = −1 undone. Obtain a basis for the generalized eigenspace of λ = −1
that yields a matrix representation that is composed of Jordan blocks. You
could use an arbitrary basis for the generalized eigenspace of λ = 2 when doing
teh similarity transformation that is a check on your work.
Exercise 19 (March 1). Compute the minimal polynomial of A without us-
ing Sage’s .minpoly() method. Compute rational canonical form, and factor
the polynomials for each companion matrix, observing the divisibility condi-
tion.

A =



−33 16 −34 −18 −8 18 0

−27 13 −38 −20 −10 22 0

84 −41 63 33 16 −28 −3

−36 18 −23 −11 −10 8 5

−70 34 −60 −32 −16 29 3

66 −32 53 28 10 −25 1

−58 28 −42 −23 −12 19 4


matrix(QQ, [
[-33, 16, -34, -18, -8, 18, 0],
[-27, 13, -38, -20, -10, 22, 0],
[ 84, -41, 63, 33, 16, -28, -3],
[-36, 18, -23, -11, -10, 8, 5],
[-70, 34, -60, -32, -16, 29, 3],
[ 66, -32, 53, 28, 10, -25, 1],
[-58, 28, -42, -23, -12, 19, 4]
])

Exercise 20 (March 1). This problem requires knowledge of basic group
theory. Suppose T : V → V is a linear transformation and W is a T -invariant
subspace of V . Explain why the quotient vector space V /W makes sense.
Define a new linear transformation T ∗ on V /W that is induced by T . (Part of
the problem is figuring out what this means.) Now show that T ∗ is well-defined.

Exercise 21 (March 4). Compute the LU decomposition of A by forming
the row operations (all of the third type) to convert A into an upper-triangular
matrix U and then determine L. Now that you know what the decomposition
is, apply the formulas of SCLA Theorem 2.1.4 to obtain the decomposition
again.

A =


−1 1 0 −3 −6

3 −2 −3 4 −5

2 −2 −1 5 6

0 −1 −2 1 −2

4 −1 −3 3 −8


matrix(QQ, [
[-1, 1, 0, -3, -6],
[ 3, -2, -3, 4, -5],
[ 2, -2, -1, 5, 6],
[ 0, -1, -2, 1, -2],
[ 4, -1, -3, 3, -8]
])

Exercise 22 (March 8). See four exercises in SCLA about Householder
matrices.

• SCLA 1.5.6
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http://buzzard.ups.edu/scla2021/section-reflectors.html#exercise-normal-normals


• SCLA 1.5.7

• SCLA 1.5.8

• SCLA 1.5.9 Solutions (of different styles) can be found in GVL and TB.

Exercise 23 (March 11). SCLA describes informally an algorithm for ob-
taining a full QR decomposition with a sequence of Householder reflections.
Build a 4 × 4 matrix of random integers using M = random_matrix(QQ, 4,
algorithm="unimodular", upper_bound=9) which will make a matrix with de-
terminant 1, and hence will be nonsingular. (Try creating a few matrices before
you choose one to work with—too many zeros or ones and it will not be as inter-
esting.) Convert your matrix to QQbar with A = M.change_ring(QQbar). Now
build the the Householder reflections necessary to create R, form their product
and verify that you have a QR decomposition (including that Q is unitary).

Hints: Be sure all your vectors and matrices are over QQbar and stay that
way (and do not become symbolic matrices with sqrt() in them). The Sage
matrix method .change_ring() can help with this, as well as providing QQbar
to various constructors. You might find it convenient to recycle our Python
function to build a Householder matrix from a Householder vector, or to cre-
ate a Householder matrix from a part of a column. The Sage matrix method
.column() could be useful, and a Python slice like v[2:4] could also be handy.
Note that this exercise does not suggest building a totally general function
to create a QR decomposition of any old matrix. Just find the correct three
Householder matrices and do the right things with them. Extra credit: build
a rank 3 matrix and do it again to see what happens with a singular ma-
trix. Use M = random_matrix(QQ, 4, algorithm="echelonizable", rank=3,
upper_bound=9).
Exercise 24 (March 18). Consider the matrix

A =



−1 −1 1 −2 −2 −6 7 −2 6 −4

−1 0 0 −1 0 −1 4 −1 1 1

0 2 −1 −1 −1 −6 8 0 −1 2

1 1 −1 1 0 0 −2 1 −2 0

0 0 1 0 2 5 −2 1 −5 6

0 1 −1 0 −1 −4 3 0 1 −1

0 1 −1 −1 −2 −7 7 −1 3 −3

−1 −2 2 1 2 7 −8 1 −1 3


.

The following exercise will have you construct the SVD of A with fairly basic
Sage commands.
matrix(QQ,
[[-1, -1, 1, -2, -2, -6, 7, -2, 6, -4],
[-1, 0, 0, -1, 0, -1, 4, -1, 1, 1],
[ 0, 2, -1, -1, -1, -6, 8, 0, -1, 2],
[ 1, 1, -1, 1, 0, 0, -2, 1, -2, 0],
[ 0, 0, 1, 0, 2, 5, -2, 1, -5, 6],
[ 0, 1, -1, 0, -1, -4, 3, 0, 1, -1],
[ 0, 1, -1, -1, -2, -7, 7, -1, 3, -3],
[-1, -2, 2, 1, 2, 7, -8, 1, -1, 3]
])

(a) Compute the eigenvalues of A∗A and AA∗, and verify that they are
equal. (Use Sage’s .eigenvalues() method, not a more tedious proce-
dure.) Note that Sage reports the eigenvalues in the “wrong” order. Save
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http://buzzard.ups.edu/scla2021/section-reflectors.html#exercise-householder-complex
http://buzzard.ups.edu/scla2021/section-reflectors.html#exercise-householder-matrix-vector-product
http://buzzard.ups.edu/scla2021/section-reflectors.html#exercise-householder-vector


the list in a variable, and then use the Python .reverse() method to re-
verse the list/variable in-place. Compute a separate list of the singular
values.

(b) Use Sage’s .eigenmatrix_right() method to get the eigenvectors of A∗A.
The eigenvectors for the nonzero eigenvalues should form an orthogonal
set. Make them an orthonormal set. Collect the eigenvectors for the
zero eigenvalue, and convert them to an orthonormal set. Sage’s .QR()
method might be a quick way to do this. Form the matrix V whose
columns are these eigenvectors. Check that V is unitary. (Note that you
will likely need to reverse the lists of eigenvectors at some point to match
the order of the singular values.)

(c) Create the r vectors yi from the eigenvectors in the previous part. They
should form an orthonormal set. Find an orthonormal set of eigevectors
for the zero eigenvalue of AA∗. Package these eigenvectors into the matrix
U , and verify that it is unitary. (Note that you will likely need to reverse
the lists of eigenvectors at some point to match the order of the singular
values.)

(d) Construct the S matrix with the singular values from before and verify
that A = USV ∗ AND/OR “diagonalize” A using U and V properly and
verify that the result has the singular values on the diagonal.

(e) Use the singular values, and the columns of V and U , to build the matrix
A with the rank one decomposition.

Exercise 25 (April 8). Suppose that A is a nonsingular matrix. What
can you say about a solution, x̂, to the normal equations? Comment on this
situation.
Exercise 26 (April 9). It is thought that tooth decay in children is caused
by sugar in candy and sugar in carbonated drinks (“soda”). Six ten-year old
children, and their parents, were surveyed to determime weekly amounts of
candy and soda consumed (in ounces) and the number of fillings due to cavities
from tooth decay.

Candy Soda Fillings
0 0 1
5 12 2
24 48 3
20 60 3
30 128 5
0 150 4

(a) Form a linear model whose parameters may be estimated via the normal
equations. What are the resulting estimates?

(b) Compute the residual vector and the coefficient of determination (“R
squared”).

(c) A five-year old child who did not participate in the study consumes 40
ounces of candy and 30 ounces of soda. Predict how many fillings the
child will have when they are ten years old.

(d) Suppose parents think an 8 ounce candy bar and a 16 ounce soda are
“equivalent” treats for a young child. Which is more detrimental to the
child’s teeth?
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