Class—FCLA IS

Advanced Linear Algebra

Robert Beezer

Math 390, Spring 2021

An 8×8 matrix, carefully engineered,

	-14	-2	3	-15	3	-6	4	3	
A =	-6	-7	-10	21	7	8	3	-9	1
	-24	-17	-11	23	17	14	6	-13	
	19	-3	-10	37	2	17	-5	-10	
	-21	-15	-12	20	17	11	6	-11	•
	-30	-5	4	-24	5	-9	8	4	
	-37	-11	-1	-14	11	-5	12	-1	
	22	-1	-8	32	0	16	-6	-6	

```
A = matrix(QQ, [
[-14, -2, 3, -15, 3, -6, 4, 3],
[-6, -7, -10, 21, 7, 8, 3, -9],
[-24, -17, -11, 23, 17, 14, 6, -13],
[19, -3, -10, 37, 2, 17, -5, -10],
[-21, -15, -12, 20, 17, 11, 6, -11],
[-30, -5, 4, -24, 5, -9, 8, 4],
[-37, -11, -1, -14, 11, -5, 12, -1],
[22, -1, -8, 32, 0, 16, -6, -6]
])
A
```

We saw before that $\lambda = 2$ and $\lambda = 3$ were potential eigenvalues, as roots of a polynomial $p(x) = (x-2)^3(x-3)^3$. We confirmed that they are indeed both eigenvalues by checking that $A - \lambda I_8$ is a singular matrix.

Demonstration 1 We will now investigate *generalized* eigenspaces for each. We can verify much of Theorem NSPM by looking at the dimensions of null spaces (nullities) of powers of $A - \lambda I_8$.

[((A-2)^i).nullity() for i in range(9)]

[((A-3)^i).nullity() for i in range(9)]

Notice that each sequence "tops out" at the third power. It is a coincidence that it is the same power for each eigenvalue (because this is a small example). It is actually not a great surprise (but not a theorem) that the polynomial we found has each factor to the third power.

The algebraic multiplicities are 5 and 3, which sum to n = 8. This will be a theorem that we have to work very hard to get.

Demonstration 2 Build each generalized eigenspace using .right_kernel(basis='pivot'), and do it twice. Once with the smallest possible power and once with the power n = 8. Notice that Sage will let us test the equality of these subspaces.

Demonstration 3 Get a basis for one generalized eigenspace, build a vector in the subspace with a very arbitrary linear combination, multiply by A, and test for membership in the subspace. This is demonstrating that the generalized eigenspace is an invariant subspace of A.