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The Jordan Canonical Form of a matrix is basically a combinatorial compu-
tation, once we have the eigenvalues of the matrix (which is a hard computation).
Here we will find a basis for the matrix representation first, then show how to
find the representation only (without finding a basis first), by just knowing
dimensions of the kernels of powers of matrices formed from eigenvalues.

We begin with a large-ish matrix in order to demonstrate the most general
situations.

A = matrix(QQ,
[[50, -10, 17, -21, 7, 6, 1, -37, -8, -10, 10, -14, 27, 39,

8],
[186, -207, -36, -184, -74, -71, -54, -22, -1, -93, 38, -11,

56, 187, 14],
[3, 16, 9, -10, -11, 8, -4, -24, 4, -6, 2, -14, 13, 6, -2],
[-132, 202, 62, 162, 83, 77, 58, -23, -14, 86, -28, -4, -22,

-149, -3],
[213, -237, -41, -218, -94, -82, -65, -30, 2, -111, 45, -16,

69, 216, 13],
[-608, 549, 27, 552, 195, 173, 139, 178, 34, 266, -124, 72,

-239, -574, -57],
[253, -299, -57, -274, -125, -108, -83, -26, 3, -137, 52,

-15, 79, 258, 15],
[-196, 175, 0, 170, 50, 56, 38, 58, 21, 76, -38, 18, -76,

-176, -23],
[704, -651, -40, -649, -233, -206, -167, -197, -35, -313,

143, -80, 272, 668, 64],
[322, -238, 25, -251, -53, -62, -51, -126, -39, -112, 62,

-43, 139, 283, 42],
[-536, 411, -28, 449, 129, 115, 98, 211, 52, 207, -105, 79,

-236, -482, -61],
[170, -190, -25, -165, -58, -67, -45, -20, -11, -77, 32, -4,

51, 163, 17],
[1, 14, 9, 10, 9, 7, 6, -7, -4, 5, 0, -1, 7, -4, 1],
[223, -195, -1, -201, -64, -61, -49, -71, -20, -92, 43, -26,

91, 206, 25],
[-58, 4, -27, 29, -7, -10, 1, 53, 12, 12, -11, 20, -39, -45,

-10]
])
A

Eigenvalues first, a nontrivial computation. In this example, they are all
integers, which is atypical.

A.eigenvalues ()



We will work with λ = 2, leaving λ = −1 for you to experiment with. The
the (invariant) generalized eigenspace for λ = 2 has dimension 10, so algebraic
multiplicity is αA(2) = 10.

((A-2) ^15).nullity ()

Converted to a linear transformation A− 2I15 is nilpotent when restricted
to the generalized eigenspace. We do not know the index yet, but we know we
only have to look as far as the tenth power.

[((A-2)^i).nullity () for i in range (11)]

So the kernels of the powers of A− 2I15 “top out” at the fifth power, so the
index is ιA(2) = 5.

We now build a basis of the dimension 10 generalized eigenspace. We begin
with vectors in the kernel of the fifth power, multiplying them by A− 2I15 to
move them down into kernels of progressively smaller powers. Properly ordered,
we get a “nice looking” matrix representation.

Table 1 Basis Vectors in Kernels

Kernels N
(
(A− 2I15)i

)
i = 1 i = 2 i = 3 i = 4 i = 5

Dimension 4 7 8 9 10
x1 x2 x3 x4 x5
x6 x7
x8 x9
x10

How much information did we have about the Jordan blocks owing to this
eigenvalue, prior to actually computing the basis? The nullity of A− 2I15 is
n(A− 2I15) = 4, so there will be 4 Jordan chains, each ending in a traditional
eigenvector, associated with one Jordan block. So there are four blocks. With
an index of 5, the lonest chain has 5 vectors, and so the largest block will be a
5 × 5 Jordan block.

To determine all of the sizes of the blocks, we compute the differences
between the dimensions of the kernels. These are the si, 1 ≤ i ≤ p in the proof
of Jordan canonical form for nilpotent matrices.

dims = [((A-2)^i).nullity () for i in range (6)]
dimdiffs = [dims[i+1]-dims[i] for i in range (5)]
dimdiffs

From these numbers we can deduce the construction of the basis vectors for
the kernels of the powers of A− 2I15, where we would begin with the kernel
of the fifth power. The Ferrers Diagram of this partition of 10 is a display
of the transpose of the basis vectors listed at the end of the proof of Jordan
canonical form for nilpotent matrices.

P = Partition(dimdiffs)
print P
print P.ferrers_diagram ()

We want to reflect this diagram.

flipped = P.conjugate ()
print flipped
print flipped.ferrers_diagram ()
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So the length of each row is the size of the blocks (a sequence of basis
vectors) and we can get this information directly from the list that is the
“flipped” partition. So we build the blocks (not forgetting λ = 2!)

J = block_diagonal_matrix ([ jordan_block (2,5),
jordan_block (2,2), jordan_block (2,2), jordan_block (2,
1)])

J

Let’s check. Notice that this is one of the few matrix decompositions in Sage
which does not automatically provide the similarity transformation. As the
work above shows, we can determine the canonical form without ever computing
a basis vector, we need only get nullities by counting non-pivot columns of
matrices in reduced row echelon form (of powers of matrices).

A.jordan_form(transformation=False)

Sage will compute the similarity transformation, if asked.

A.jordan_form(transformation=True)

We can also provide a different similarity transformation, since we reverse-
engineered this example (though our eigenvalues are in the wrong order).

S = matrix(QQ,
[[1, 0, 0, 0, 0, 0, 0, 1, 0, -1, -2, -2, -1, 2, 4],
[1, 1, 0, 2, 0, 2, -3, -2, -1, 1, 1, -3, -2, 2, 3],
[0, 0, 1, 0, 0, 0, 0, 1, 0, 1, 0, -1, -5, 5, -3],
[-1, -2, 0, -3, 0, -2, 4, 3, 1, -3, -3, 3, 3, -3, -1],
[0, 1, 0, 1, 1, 2, -2, -1, 0, 2, 2, -3, -2, 1, 1],
[0, 0, 0, 0, -2, -3, 1, 0, 0, 0, -1, 2, 4, 1, -4],
[0, 1, 0, 2, 0, 2, -2, -2, 0, 2, 4, 0, -4, 1, -3],
[0, 0, 0, 0, 0, 0, 0, 1, 0, 2, 0, -2, -3, 5, -1],
[1, 1, 0, 1, 2, 3, -2, -1, 0, 1, 2, -2, -4, -1, 2],
[1, 0, -1, -1, 1, -1, 1, 0, -1, -1, -1, 5, -1, -4, 5],
[0, 1, 0, 2, -1, 0, -3, -2, 0, 2, 1, -4, 3, 4, -3],
[1, 1, 0, 2, -1, 1, -3, -4, -1, -1, 1, 0, 2, -2, 0],
[-1, -1, -1, -2, 1, 0, 2, 1, 1, 0, 0, 1, 2, -3, 0],
[0, 0, 0, 0, 0, 0, 0, -1, -1, 0, 1, 4, -2, -2, -1],
[0, 0, 0, 1, 0, 1, -1, -1, 0, 0, 1, -3, 5, -2, -3]

])
S

S.inverse ()*A*S
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