A sage “interact” by Jason Grout (lead developer of the Sage Cell). Find it publicly at http://interact.sagemath.org/node/60. Some notes:

- Slider controls the green unit vector in far right display.
- Red and blue vectors begin far right as columns of V.
- Track the transformation of the green vector (and the others) by the matrix A, but in the three steps given by the matrices of the SVD (read displays from right to left, as composition of linear transformations).
- Try other matrices, perhaps some special cases, like rank 1, or diagonal.
- What would the demo look like for a 3×3 matrix? A 3×4 matrix?

```python
@interact
def _(A=matrix(RDF,2,2,[3,2,-4,3]),
     angle=slider(0,2*pi,default=3*pi/4):
    opts = {'figsize': 3}
    vn = vector(RDF, [cos(angle), sin(angle)])
    e1,e2=identity_matrix(2).columns()
    U,S,V = A.SVD()
    v1,v2 = V.columns()
    s1,s2 = list(S.diagonal())
    u1,u2 = U.columns()
    p1=circle((0,0),1,**opts)
    p1+=plot(vn,color='green')
    p1+=plot(v1,color='red')+plot(v2,color='blue')
    p2 = circle((0,0),1, **opts)
    p2+=plot(V.H*vn,color='green')
    p2+=plot(V.H*v1,color='red')
    p2+=plot(V.H*v2,color='blue')
    p3 = ellipse((0,0), s1,s2, **opts)
    p3 += plot(S*V.H*v1, color='red')
    p3 += plot(S*V.H*v2, color='blue')
    p3+= plot(S*V.H*vn,color='green')

    # we multiply by the sign of the y-coordinate
    # because arccos has a range of 0 to pi
    # we need to handle rotations that go from 0 to 2pi
    rotation = arccos(u1*vector([1,0])/u1.norm())*sign(u1[1])
```

2 The 3 × 3 Case

A routine to apply a matrix to the coordinate axes, and apply also it to a unit sphere (whose image is an ellipsoid). The output will require letting Java run to view properly.

```
def matrix_action(A, dim):
    """Input nonsingular 3x3 matrix A, and maximum bounding dimension
    Plots images of coordinate axes, and image of unit sphere"
    var('x, y, z')
    vect = vector([x, y, z])
    f = vect*(A.transpose())^-1*A^-1*vect
    xpp = point3d(A*vector([1, 0, 0])).list()
    xp = point3d(xpp, color='red', size=10)
    linex = line3d([(0, 0, 0), xpp], color='red', thickness=3)
    ypp = point3d(A*vector([0, 1, 0])).list()
    yp = point3d(ypp, color='green', size=10)
    liney = line3d([(0, 0, 0), ypp], color='green', thickness=3)
    zpp = point3d(A*vector([0, 0, 1])).list()
    zp = point3d(zpp, color='black', size=10)
    linez = line3d([(0, 0, 0), zpp], color='black', thickness=3)
    return implicit_plot3d(f, (x, -dim, dim), (y, -dim, dim),
                           (z, -dim, dim), contour=1, aspect_ratio=[1, 1, 1],
                           opacity=0.6)+xp+yp+zp+linex+liney+linez
```

A 3 × 3 matrix to experiment with. Along with its SVD decomposition.

```
A = matrix(RDF, [[2, 3, 1], [-1, 2, 1], [0, 2, 3]])
show(A)
```

```
U, S, V = A.SVD()
show(U)
show(S)
show(V)
```

Default. The identity matrix.

```
show(matrix_action(identity_matrix(3), 1.2))
```
Inverse of unitary matrix V first, moving the columns of V onto the coordinate axes.

\[
\text{show(matrix_action(V.conjugate_transpose(), 1.2))}
\]

Then stretching along the coordinate axes. Size is influenced by maximum singular value.

\[
\text{show(matrix_action(S*V.conjugate_transpose(), 5.1))}
\]

Now move coordinate axes to columns of U.

\[
\text{show(matrix_action(U*S*V.conjugate_transpose(), 5.1))}
\]

This last result should be the same as just applying A directly.

\[
\text{show(matrix_action(A, 5.1))}
\]