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Hilbert Spaces and Hand-waving

Hilbert spaces generalize Euclidean spaces.
What ”defines” a Euclidean space:

Vector space with the dot product

Calculus

We can generalize the dot product as the inner product

Inner Product

Define the inner product to be a bilinear functional acting on
two elements of a vector space 〈~x , ~y〉 which is:

Conjugate symmetric: 〈~x , ~y〉 = 〈~y , ~x〉
Linear in its first argument:
〈a~x1 + b ~x2, ~y〉 = a〈~x1, ~y〉+ b〈~x2, ~y〉
Positive definite: 〈~x , ~x〉 > 0 for all ~x 6= ~0 and 〈~x , ~x〉 = 0 if
and only if ~x = ~0
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Hilbert Space and Hand-waving: Inner Product
Spaces

A vector space V equipped with an inner product is an Inner
Product space.

Norm

We define the norm of a vector in an Inner Product space to be
||~v ||2 = 〈~v , ~v〉.

We have some familiar looking results:

Theorem: Parallelogram Law

For ~v1, ~v2 ∈ V , ||~x + ~y ||2 + ||~x − ~y ||2 = 2||~x ||2 + 2||~y ||2

Theorem: Pythagoras

For ~x , ~y ∈ V such that 〈~x , ~y〉 = 0, ||~x + ~y ||2 = ||~x ||2 + ||~y ||2
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Hilbert Spaces and Hand-waving: Metric Spaces

A set M with metric µ is a Metric space if for all
m1.m2,m3 ∈ M:

Identity of Indiscernibles: µ(s1, s2) = 0 if and only if
s1 = s2

Symmetric: µ(s1, s2) = µ(s2, s1)

Triangle Inequality: µ(s1, s3) ≤ µ(s1, s2) + µ(s2, s3)

µ(s1, s2) is the ”distance” between s1 and s2.

Completeness

A Cauchy sequence in Metric space M is a sequence {mi} for
i ≥ 1 such that for every ε > 0 there exists an N such that
µ(ml ,mk) < ε for l , k > N.
A Metric space M is complete if every Cauchy sequence in M
converges to a point in M



The Discrete
Fourier

Transform:

Hayden Borg

Hilbert Spaces and Hand-waving

Theorem

Given an Inner Product space and ~v1, ~v2 ∈ V , the identity of
indiscernibles, the triangle inequality, and symmetry hold for µ
defined: µ(~v1, ~v2) = ||~v2 − ~v1||.

An Inner Product space which is also a complete Metric space
is called a Hilbert space.

We now have:

Vector space with inner product

Calculus
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Hilbert Spaces and Hand-waving: Central Result

Let {~yi} be an orthonormal set in Hilbert space H and ~v ∈ H
such that ~v =

∑
k

ak ~yk . Then, ak = 〈~v , ~yk〉

Proof

〈~v , ~yj〉 = 〈
∑
k

ak ~yk , ~yj〉 =
∑
k

ak〈~yk , ~yj〉 = ak
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Hilbert Spaces and Hand-waving

Example: R2

B = {


1√
2
1√
2

0

 ,[ 1√
2

− 1√
2

]
} is an orthonormal basis of R2.

[
4
8

]
= 〈
[

4
8

]
,

[
1√
2
1√
2

]
〉

[
1√
2
1√
2

]
+ 〈
[

4
8

]
,

[
1√
2

− 1√
2

]
〉

[
1√
2

− 1√
2

]

=
12√

2

[
1√
2
1√
2

]
− 4√

2

[
1√
2

− 1√
2

]
=

[
6− 2
6 + 2

]
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Hilbert Spaces and Hand-waving: L2([0,T ])

The set of all complex valued functions with real input

integrable on the interval [0,T ] such that
T∫
0

|f (x)|2dx <∞.

Inner Product

〈f (x), g(x)〉 =
T∫
0

f (x)g(x)dx

Let’s examine { 1√
T
e i

2π
T
kx |k ∈ Z}.

First,

T∫
0

| 1√
T
e i

2π
T
kx |2dx =

T∫
0

1√
T

2

dx

= 1 <∞
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Hilbert Spaces and Hand-waving: L2([0,T ])

Next,

〈 1√
T
e i

2π
T
nx ,

1√
T
e i

2π
T
mx〉 =

1

T

∫
0T e i

2π
T
nxe i

2π
T
mxdx

=
1

T

∫
0T e i

2π
T
(n−m)xdx

=

{
1
T

∫ T
0 1dx for n = m
1

i2π(n−m)(e2π(n−m) − e0) for n 6= m

=

{
1 for n = m

0 for n 6= m

So, { 1√
T
e i

2π
T
kx |k ∈ Z} is orthonormal.
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L2([0,T ]) and Complex Fourier Series

We can rewrite any f ∈ L2([0,T ]) using our central result:

f (x) =
∑
k∈Z

ake
i 2π
T
kx

Where:

ak = 〈f , e i
2π
T
kx〉

=

T∫
0

f (x)e−i
2π
T
kxdx

This is the complex Fourier series.
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Complex Fourier Series: Example

Square wave period 1: f (x) =

{
1 for 0 ≤ x < 1

2

−1 for 1
2 ≤ x < 1

First we find the ak :

ak =

∫ 1

0
f (x)e−i2πkxdx

=

∫ 1
2

0
e−i2πkxdx −

∫ 1

1
2

e−i2πkxdx

=
−1

i2πk
(e−iπk − 1)− −1

i2πk
(1− e−iπk)

=
−1

inπ
(e−ikπ − 1)

=

{
0 if k is even

− 2i
nπ if k is odd
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Fourier Series: Applications

Wide variety of applications:

Solving PDEs

Probability theory and statistics

NMR, IR, etc. spectroscopy

X-ray crystallography

MRI

Image and signal processes

Audio engineering
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Fourier Transform

Generalization to aperiodic functions

Need to consider: L2(R)

Definition: Fourier Transform

f̂ (ω) =
∞∫
−∞

f (x)e i2πωxdx

And

f (x) =
∞∫
−∞

f̂ (ω)e i2πωxdω

Orthonormal Basis: {e i2πωx |ω ∈ R}



The Discrete
Fourier

Transform:

Hayden Borg

Discrete Fourier Transform

Digital signal and discretized data are common.

Consider a function f sampled uniformly N times over an
interval [0,T ].
That’s at: 0, TN , 2

T
N , . . . , (N − 1)TN

“Package” in a vector:

f → ~v =


f0
f1
...

fN−1


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Discrete Fourier Transform

Sample basis vectors at the same points.

Roots of Unity

The primitive Nth root of unity is ωN = e−i
2π
N

e i
2π
T
kx → ~ek =


ωN

0·k

ωN
1·k

ωN
2·k

...

ωN
(N−1)·k


Note: We only need ~e0, ~e1, . . . ~eN−1
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Discrete Fourier Transform

We’ll call ~̂v the transform of ~v .

[~̂v ]k = ak

Central result

Let {~yi} be an orthonormal set in Hilbert space H and ~v ∈ H
such that ~v =

∑
k

ak ~yk . Then, ak = 〈~v , ~yk〉

‘Do’ the Fourier series on our sampled function:

[~̂v ]k = 〈~v , ~ek〉 = ~ek
∗
~v

Then,
~̂v = [~e0|~e1| . . . |~eN−1]∗~v
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The Discrete Fourier Transform

So we define the DFT to be the linear transformation
T : CN → CN defined by the matrix vector product:

T (~v) =


ω0·0
N ω0·1

N . . . ω
0·(N−1)
N

ω1·0
N ω1·1

N . . . ω
1·(N−1)
N

...
...

. . .
...

ωN·0
N ωN·1

N . . . ω
N·(N−1)
N

 ~v
Call this matrix F .

Theorem

The matrix U = 1√
N
F is unitary.
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The Discrete Fourier Transform

The DFT is primarily used to go from the ‘time’ to the
‘frequency’ domain

Spectral analysis

Spectroscopy

Filtering

MRI

Spatial information
Artifacts

Audio recording and engineering

Can also be used in data compression

JPEG

mp3
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Cooley-Tukey Algorithm

Determining F and calculating the matrix vector product is
O(n2).
We can exploit some symmetries to make this more efficient.

Danielson-Lanczos Lemma

The DFT for N = 2m for some m ∈ N, [~̂v ]i =
N−1∑
k=0

[~v ]k [FN ]ik ,

may be rewritten

[~̂v ]i = [FN
2
~veven]i + [DN

2
FN

2
~vodd]i for 0 ≤ i ≤ N

2 − 1

[~̂v ]i = [FN
2
~veven]i − [DN

2
FN

2
~vodd]i for N

2 < i < N − 1
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Cooley-Tukey Algorithm

Theorem

Given an N−point DTF, FN , where N = 2k where k ∈ N.
Then,

FN =

[
IN
2

DN
2

IN
2

−DN
2

][
FN

2

FN
2

] [
even-odd

permutation

]
.

Then the FFT may be calculated

Calculate the ωN (O(N))

Recursively apply this decomposition log2N times

This recursion gives log2N operations for each ‘slot’ and there
are N slots so we have O(N logN)
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Conclusions

1 Euclidean spaces can be generalized to Hilbert spaces

2 Square-integrable functions are vectors in the Hilbert
space L2(R) and can be expressed as a linear combination
of basis vectors

3 The Fourier series and Fourier Transform are vector
decomposition with the special basis {e i2πωx}

4 The DFT can ‘do’ the Fourier Transform on discrete data
and can be represented as a matrix vector product

5 The DFT can be more efficiently calculated using the
Cooley-Tukey Algorithm
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