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1 Introduction

Fourier analysis, broadly, is the study of representing or approximating functions with sums
of trigonometric functions or complex exponential functions. Fourier analysis has a wide
range of applications including: solving partial differential equations, probability theory and
statistics, and signal processing. Its applicability in signal processing gives it a vast number of
use cases including: X-ray crystallography, infrared spectroscopy, nuclear magnetic resonance
spectroscopy, MRIs, image processing, and audio editing.

This paper seeks to give readers an brief introduction to Fourier analysis beginning with
Fourier series and the Fourier transform. In particular, this paper seeks to introduce readers
to the Discrete Fourier Transform and the Fast Fourier Transform, as motivated by Hilbert
spaces and Fourier series, using the ‘tools’ of linear algebra.

2 Hilbert Spaces

We begin with Hilbert spaces. Hilbert spaces can be intuitively understood as an extension
or generalization of Euclidean spaces, such as R2 or R3, to n−dimensions for n ∈ Z+.

We define a Hilbert space to be an inner product space which is also a complete metric
space. [1] For the purposes of this paper we will consider only real and complex inner product
spaces.

2.1 Inner Product Spaces

An inner product is bifunction, linear in the first argument and conjugate linear in the
second, acting on elements of a vector space which is:

1. Conjugate symmetric: 〈~x, ~y〉 = 〈~y, ~x〉

2. Linear in its first argument: 〈a ~x1 + b ~x2, ~y〉 = a〈 ~x1, ~y〉+ b〈 ~x2, ~y〉

3. Positive definite: 〈~x, ~x〉 > 0 for all ~x 6= ~0 and 〈~x, ~x〉 = 0 if and only if ~x = ~0

A vector space equipped with an inner product is an inner product space. We define the
norm in an inner product space to be ||~x|| where ||~x||2 = 〈~x, ~x〉.

We then have some familiar results. [1]
Let V be an inner product space.

Theorem 1. (Parallelogram Law.) For ~x, ~y ∈ V , ||~x+ ~y||2 + ||~x− ~y||2 = 2||~x||2 + 2||~y||2.

Theorem 2. (Pythagorean Theorem.) For ~x, ~y ∈ V such that 〈~x, ~y〉 = 0, ||~x + ~y||2 =
||~x||2 + ||~y||2.

Theorem 3. (Bessel’s inequality.) If {~vi} is a finite orthonormal family of vectors then,∑
k |〈~v, ~vk〉|2 ≤ ||~v||2 for every ~v ∈ {~vi}.

Theorem 4. (Schwartz’s inequality.) For ~x, ~y ∈ V , |〈~x, ~y〉|2 ≤ ||~x||||~y||.
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2.2 Metric Spaces

A metric space is a set S with a metric µ which defines a distance between points in S. [2]
µ must satisfy the following for all s1, s2, s3 ∈ S:

1. µ(s1, s2) = 0 implies s1 = s2

2. Symmetric: µ(s1, s2) = µ(s2, s1)

3. Triangle Inequality: µ(s1, s3) ≤ µ(s1, s2) + µ(s2, s3)

A Cauchy sequence, {si} for i ≥ 1, in a metric space (S, µ) is a sequence in which for
every positive, real number ε > 0 there is an integer N for which µ(sn, sm) < ε for n,m > N .
That is to say the sequence converges.

A metric space (S, µ) is complete if every Cauchy sequence in S converges to a point in
S. This is all, more or less, to say that we can ‘do’ calculus in a complete metric space.

The closure of a proper or improper subset of a metric space S ⊂ (M,µ) is defined
S = S ∪ {limn→∞ sn|sn ∈ S for all n ∈ N} A subset of a metric space (S, µ) is dense if
S = S. Informally, we may say that a set is dense if every point arbitrarily close to an
element of that set is also in that set.

2.3 Hilbert Spaces

Theorem 5. The norm in an inner product space is positive definite, positive homogeneous,
and subadditive.

Proof. The inner product is positive definite and so the norm is positive definite.

Grab α ∈ C and ~x ∈ H. Then,

||α~x||2 = 〈α~x, α~x〉 = 〈αα~x, ~x〉 = αα〈~x, ~x〉 = |α|2||~x||2.

So, the norm is positive homogeneous.

||~x+ ~y||2 = 〈~x+ ~y, ~x+ ~y〉
≤ 〈~x, ~x〉+ |〈~x, ~y〉|+ |〈~y, ~x〉|+ 〈~y, ~y〉
= ||~x||2 + |〈~x, ~y〉|+ |〈~y, ~x〉|+ ||~y||2

≤ |~x||2 + 2||~x||||~y||+ ||~y||2 Schwartz’s inequality

= ||~x||2 + ||~y||2

So, ||~x+ ~y|| ≤ ||~x||2 + ||~y||2 and the norm is subadditive.

It then quickly follows:

Theorem 6. If we define the distance between two elements of an inner product space, V,
to be ||~x− ~y||, then V is a metric space with respect to µ(~x, ~y) = ||~x− ~y||.

Proof. The norm is positive definite so ||~x− ~y|| = 0 implies that ~x = ~y.
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Observe: ~x− ~y = −1(~y − ~x).
So using the positive homogeneity of the norm,

||~x− ~y|| = || − 1(~y − ~x)|| = | − 1|||~y − ~x|| = ||~y − ~x||.

So µ is symmetric.

Then, observe: ~x− ~y = (~x− ~z) + (~z − ~y).
So,

||~x− ~y|| = ||(~x− ~z) + (~z − ~y)|| ≤ ||(~x− ~z)||+ ||(~z − ~y)||.

Then, the triangle inequality holds for µ.

Given two metric spaces (M,µ) and (S, σ), a function f : M → S is uniformly continuous
if for any real real ε > 0 there exists a δ > 0 such that for any m1,m2 ∈M with µ(m1,m2) <
δ, σ(f(m1), f(m2)) < ε.

We may consider vector addition, scalar multiplication, and the norm as defined for an
inner product space, V , as functions Φ : V → V or Φ : V → R

• Vector addition with a fixed ~y: Φ+,~y(~x) = ~x+ ~y

• Scalar multiplication with a fixed scalar α: Φ·,α(~x) = α~x

• Inner product with a fixed vector ~y: Φ·,~y(~x) = 〈~x, ~y〉

• The norm: Φ|| ||(~x) = ||~x||

Theorem 7. Vector addition (Φ+,~y), scalar multiplication (Φ·,α), the inner product (Φ·,~y),
and the norm (Φ|| ||) in a Hilbert space are uniformly continuous. [1]

To summarize, a Hilbert space is a vector space equipped with an inner product which
can be used to define a norm. This norm is then the metric for the vector space which is
also a complete metric space.

At the risk of being too vague, we may say that a Hilbert space is a vector space with
‘euclidean’ geometry in which we can ‘do’ calculus.

Many of the concepts important to vector spaces may be generalized to Hilbert spaces.

A set in a Hilbert space is orthogonal if each element is orthogonal to every other element.
That is {~yi} is orthogonal if 〈~yi, ~yj〉 = 0 for all i 6= j. If each ~y ∈ {~yi} has ||~y|| = 1, {~yi} is
orthonormal.

Theorem 8. Let {~yi} be an orthonormal set in Hilbert space H and ~v ∈ H such that
~v =

∑
k

ak ~yk. Then, ai = 〈~v, ~yk〉 [3]

Proof. 〈~v, ~yj〉 = 〈
∑
k

ak ~yk, ~yj〉 =
∑
k

ak〈~yk, ~yj〉 = ak

The set {~ei} in a Hilbert space, H, is an orthonormal basis if:

1. Orthogonality: 〈~ej, ~ek〉 = 0 for all j 6= k.
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2. Normal: ||~ei|| = 1 for all ~ei.

3. Completeness: The linear span of {~ei} is dense in H.

Note: the orthogonality of ~ei guarantees linear independence.

2.4 Example 1

Define `2 to be the set of all sequences of complex numbers a0, a1, a2, . . . , which we note

{ai}, such that
∞∑
k=0

|ak|2 converges.

Scalar multiplication and vector addition are defined in the obvious way.

Define the inner product: 〈{ai}, {bj}〉 =
∞∑
k=0

akbk.

Define the norm ||{ai}||2 = 〈{ai}, {ai}〉.
With these definitions, `2 is a Hilbert space. For the purpose of brevity, the proof is

omitted.

Define ~ei to be the sequence {δij} where δ is the Kronecker delta. For example, ~e1 =
{1, 0, 0, 0, . . . }.

Proposition 1. B = {~ei for i ∈ N} is an orthonormal basis of `2.

Proof. First,
∞∑
k=0

|[~ei]k|2 = 1 so ~ei ∈ `2.

Then, for all i 6= j, 〈~ei, ~ej〉 =
∞∑
k=0

[~ei]k[~ej]k = 0.

Then, ||~ei||2 =
∞∑
k=0

[~ei]k[~ei]k = 1.

So, B is an orthonormal set.
Let ~a = {ai} be an element of `2.

Then, lim
n→∞

∞∑
k=1

ak ~ek = {ai} = ~a. So, B is dense in `2.

Then, B is an orthonormal basis of `2.

2.5 Example 2

L2(R) is the set of all square-integrable functions with real input. That is the set of all

functions with real input such that
∞∫
−∞
|f(x)|2dx <∞.

We may also consider square-integrable functions over bounded intervals. Suppose a ≤ b,

L2([a, b]) is the set of square integrable functions over the interval [a, b]. That is
b∫
a

|f(x)|2dx <
∞.

Let f, g ∈ L2(R). Then define 〈f, g〉 =
∫
R
fgdx.

Then, ||f ||2 = 〈f, f〉 =
∞∫
−∞

ffdx
∞∫
−∞
|f |2dx.
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We then have the following results which are presented without proofs for the sake of
brevity.

Proposition 2. L2(R) is a Hilbert space.

Proposition 3. L2([a, b] is a Hilbert space

Now let’s consider a basis.

Proposition 4. The set B = { 1√
T
ei

2π
T
kx|k ∈ Z} is an orthonormal basis of L2([0, T ])

Proof. First, we must show that B is a subset of L2([0, T ]).

T∫
0

| 1√
T
ei

2π
T
kx|2dx =

T∫
0

| 1√
T
|2|ei

2π
T
kx|2dx

=

T∫
0

1

T
dx

= 1

So our set, B, is in L2([0, T ]).

Now we must show our set is orthonormal.

〈
1√
T
ei

2π
T
nx,

1√
T
ei

2π
T
mx

〉
=

1

T

T∫
0

ei
2π
T
nxei

2π
T
mxdx

=
1

T

T∫
0

ei
2π
T

(n−m)xdx

=


1
T

T∫
0

1dx for n = m

1
i2π(n−m)

(e2π(n−m) − e0) for n 6= m

=

{
1 for n = m

0 for n 6= m

So, our set is orthogonal
Then,

1 = 〈 1√
T
ei

2π
T
nx, 1√

T
ei

2π
T
nx〉 = || 1√

T
ei

2π
T
nx||2

So, our set is orthonormal.

At this point we must prove that the span of B is dense in L2([0, T ]). However, this goes
well beyond the scope of this course so stating this result will have to suffice. The proof uses
the Stone-Weierstrass Theorem, so that may be a good stepping stone if one desires. [4]
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3 Fourier Series

The Fourier series is more or less a consequence of Proposition 4.

Theorem 9. A complex valued function of a real variable, f(x) which is square-integrable

on the interval [0, T ] may be represented by the series f(x) =
∞∑

n=−∞
cne

i 2π
T
nx where cn =

1
T

T∫
0

f(x)e−i
2π
T
nxdx

Proof. f(x) ∈ L2([0, T ]) and { 1√
T
ei

2π
T
kx|k ∈ Z} is an orthonormal basis of L2([0, 1]).

We can rewrite Theorem 8: ~v =
∑
k

〈~v, ~yk〉~yk
Then we can rewrite f(x):

f(x) =
∑
k∈Z

〈
f(x),

1√
T
ei

2π
T
kx

〉
1√
T
ei

2π
T
kx

=
∑
k∈Z

 1√
T

T∫
0

f(x)e−i
2π
T
kxdx

 1√
T
ei

2π
T
kx

=
∑
k∈Z

ei
2π
T
kx 1

T

T∫
0

f(x)e−i
2π
T
kxdx

Defining cn = 1
T

T∫
0

f(x)e−i
2π
T
nxdx and modifying the index we have

f(x) =
∞∑

n=−∞

cne
i 2π
T
nx

By limiting the complex value function to the interval [0, T ] we assume that the function
over R is periodic in T . The extension of Fourier series to aperiodic functions requires us to
expand the interval to R. This extension goes beyond the scope of this paper, but for the
sake of completeness will be quickly presented. [4]

Given a continuous function f(t) with real input, the Fourier Transform of f(t) is f̂(ω) =
∞∫
−∞

f(t)ei2πωtdt (provided the integral converges.)

Then, f(t) =
∞∫
−∞

f̂(ω)ei2πωtdw.

3.1 Example: Square Wave [5]

Define our square wave function with period T = 1 on the interval [0, 1]:
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f(x) =

{
1 for 0 ≤ x < 1

2

−1 for 1
2
≤ x < 1

Then,

cn =

1∫
0

f(x)e−i2πnxdx

=

1
2∫

0

e−i2πnxdx−
1∫

1
2

e−i2πnxdx

=
−1

i2πn
(e−iπn − 1)− −1

i2πn
(1− e−iπn)

=
−1

inπ
(e−inπ − 1)

=
i

nπ
((−1)n − 1)

=

{
0 if n is even

− 2i
nπ

if n is odd

So, f(x) =
∑

n is odd

− 2i
nπ
ei2πnx = −2i

π

∑
n is odd

1
n
ei2πnx

4 The Discrete Fourier Transform

Almost always measurements, incoming signals, image, etc. are not continuous functions,
but discrete data. But, the Fourier series is limited to continuous, periodic functions.

The Discrete Fourier Transform (DFT) is an extension of the Fourier series and Fourier
Transform to discrete data. At this point it is pertinent to note that the DFT may refer to
a discretized Fourier series or discretized Fourier Transform. Because the data is inherently
limited in these situations, the computations involved in extending the Fourier series and
Fourier Transform are identical although they may be considered mathematically distinct.
So, this paper will focus on the DFT as motivated by Fourier series.

The Fourier series is more or less an application of Theorem 8: ~v =
∑
k

〈~v, ~yk〉~yk where

{~yi} is the special basis { 1√
T
ei

2π
T
kx|k ∈ Z}.

We can treat N complex data points as a vector ~v ∈ CN .
Consider this data to be sampled points from a continuous function f .
Then, sample the ‘basis’ functions { 1√

T
ei

2π
T
kx|k ∈ Z} at N points:

ei
2π
N

0x →


1
1
...
1


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ei
2π
N
x →


1

ei
2π
N

ei2
2π
N

...

ei(N−1)
2π
N


We can more elegantly write these vectors using the Nth root of unity, ωN = ei

2π
N :

ei
2π
N
x →


ωN

0

ωN
1

ωN
2

...
ωN

(N−1)


In general,

ei
2π
N
kx →


ωN

0·k

ωN
1·k

ωN
2·k

...
ωN

(N−1)·k


Lemma 10. While computing the DFT, we only need to consider the N basis vectors
{ 1√

T
ei

2π
T
kx|0 ≤ k ≤ N − 1}

Proof. Consider k = N :

ei
2π
N
Nx →


ωN

0·N

ωN
1·N

ωN
2·N

...
ωN

(N−1)·N

 =


1
1
1
...
1


And k = N + 1:

ei
2π
N

(N+l)x →


ωN

0·(N+1)

ωN
1·(N+1)

ωN
2·(N+1)

...
ωN

(N−1)·(N+1)

 =


ωN

0

ωN
1

ωN
2

...
ωN

(N−1)


And generally k = N + l:

ei
2π
N

(N+l)x →


ωN

0·(N+l)

ωN
1·(N+l)

ωN
2·(N+l)

...
ωN

(N−l)·(N+l)

 =


ωN

0

ωN
1

ωN
2

...
ωN

(N−1)

 =


ωN

0·l

ωN
1·l

ωN
2·l

...
ωN

(N−1)·l


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So, we only need to consider the first N basis vectors. Sampling any basis vectors outside
of { 1√

T
ei

2π
T
kx|0 ≤ k ≤ N − 1} will only introduce repeated vectors.

For notational convenience define:

~ei =


ωN

0·i

ωN
1·i

ωN
2·i

...
ωN

(N−1)·i


Then using our results from Theorem 8 and Lemma 10, ~v =

N−1∑
k=0

〈~v, ~ek〉~ek.

We may encode this linear combination of basis vectors as a new vector in CN where
the entry is the scalar and the index is the index of the basis vector. This vector is the
transformed vector.

That is, the transform of ~v is ~̂v where [~̂v]i = 〈~v, ~ei〉 = 〈~ei, ~v〉. Note that then, [~v]i = [~̂v]i~ei

is equivalent to ~v =
N−1∑
k=0

〈~v, ~ek〉~ek.

So, [~̂v]i = ~ei
∗~v. It then becomes natural to write ~̂v as a matrix vector product:

~̂v =
[
~e0|~e1| . . . | ~eN−1

]∗
~v

We then define the DFT to be the linear transformation T : CN → CN defined by the
matrix vector product:

T (~v) =


ω0·0
N ω0·1

N . . . ω
0·(N−1)
N

ω1·0
N ω1·1

N . . . ω
1·(N−1)
N

...
...

. . .
...

ωN ·0N ωN ·1N . . . ω
N ·(N−1)
N

~v
where ωN = e−i

2π
N is the Nth root of unity. In this paper, we will write this matrix F .

Re-introducing the normalizing factor 1√
N

can be useful and is mathematically interesting.

Define U = 1√
N
F .

Proposition 5. U is a unitary matrix.

Proof. U = 1√
N


ω0·0
N ω0·1

N . . . ω
0·(N−1)
N

ω1·0
N ω1·1

N . . . ω
1·(N−1)
N

...
...

. . .
...

ω
(N−1)·0
N ω

(N−1)·1
N . . . ω

(N−1)·(N−1)
N


So, [U ]ij = 1√

N
ω
(i−1)·(j−1)
N .

Then, [U∗]ij = [U ]ji = 1√
N
ωN

(j−1)·(i−1).
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So,

[UU∗]ij =
N−1∑
k=0

[U ]ik[U∗]kj

=
N−1∑
k=0

[U ]ik[U ]jk

=
1

N

N−1∑
k=0

ω
(i−1)(k−1)
N ωN

(j−1)(k−1)

=
1

N

N−1∑
k=0

(ωNωN)(i−1)(k−1)ω
(i−j)(k−1)
N

=
1

N

N−1∑
k=0

1(i−1)(k−1)ω
(i−j)(k−1)
N

=
1

N

N−1∑
k=0

ω
(i−j)(k−1)
N

=


1
N

N−1∑
k=0

1(k−1) for i = j

1
N

N−1∑
k=0

ω
(i−j)(k−1)
N

=

{
1 for i = j

0 for i 6= j

Then, UU∗ = IN .

Direct computation shows: 1
N

N−1∑
k=0

ω
(i−j)(k−1)
N = 0 for i 6= j. This can intuitively be

understood as taking the average of N , Nth roots of unity. Geometrically, its is easy to see
this is 0.

5 Cooley-Tukey Algorithm and Matrix Decomposition

This matrix-vector product is useful for defining the DFT, but it is computationally ineffi-
cient. Directly computing the entries of the DFT matrix and the matrix vector product is
O(n2), so the naive algorithm for computing the DFT 2O(n2). While this may not seem very
computationally complex, data sets can frequently be millions of points long. The symme-
tries in the DFT matrix as well as the symmetries in calculating its entries can be exploited
to give faster algorithms for computing the DFT. These algorithms are called Fast Fourier
transform (FFT) algorithms

This paper will focus on perhaps the first FFT algorithm, the Cooley-Tukey algorithm
from the perspective of matrix decomposition.
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We first need some notation.

Given a vector ~v, let ~veven to be the vector containing the entries of ~v with even index
and ~vodd to be the vector containing the entries of ~v with odd index.

Note: for this section we’ve adopted the convention of the first entry having index 0
That is

[~veven]k = [~v]2k and [~vodd]k = [~v]2k+1.

For example,

~v =



2
1
2
1
3
1
5


→ ~veven =


2
1
3
5

, ~vodd =

1
1
1



Let the even-odd permutation matrix be the matrix which permutes the entries of a
vector so that the entries with even index, in order, are first followed by the entries with odd
index, in order.

That is, [
even-odd

permutation

]
~v =

[
~veven
~vodd

]
.

For example, the even-odd permutation matrix of size 4 is:
1 0 0 0
0 0 1 0
0 1 0 0
0 0 0 1


Given a DFT on an N− dimensional vector, which we may call an N−points DFT, define

Dn to be the n× n diagonal matrix with entries ω0
N , ωN , . . . , ω

n−1
N .

For example, given an 8−point DFT,

D4 =


1 0 0 0
0 ω8 0 0
0 0 ω2

8 0
0 0 0 ω3

8


Lemma 11. (Danielson-Lanczos Lemma) [7] The DFT for N = 2m for some m ∈ N,

[~̂v]i =
N−1∑
k=0

[~v]k[FN ]ik, may be rewritten

[~̂v]i = FN
2
~veven +DN

2
FN

2
~vodd for 0 ≤ i ≤ N

2
− 1

12



[~̂v]i = FN
2
~veven −DN

2
FN

2
~vodd for N

2
< i < N − 1

Proof.

[~̂v]l = [UN~v]l

=
N−1∑
k=0

[~v]kω
lk
N

=

N
2
−1∑

k=0

[~v]2kω
l(2k)
N +

N
2
−1∑

k=0

[~v]2k+1ω
l(2k+1)
N

=

N
2
−1∑

k=0

[~v]2kω
l(k)
N
2

+ ωlN

N
2
−1∑

k=0

[~v]2k+1ω
lk
N
2

If we let 0 ≤ l ≤ N
2
− 1 this simply becomes:

[~̂v]l = [FN
2
~veven]l + ωlN [FN

2
~vodd]l.

For N
2
< l ≤ N , define l̂ = l − N

2
. Then we may rewrite:

[~̂v]l =

N
2
−1∑

k=0

ω
N
2
N
2

[~v]2kω
l̂(2k)
N
2

+ ω l̂Nω
N
2
N

N
2
−1∑

k=0

ω
N
2
N
2

[~v]2k+1ω
l̂(2k)
N
2

=

N
2
−1∑

k=0

[~v]2kω
l̂(2k)
N
2

− ω l̂N

N
2
−1∑

k=0

[~v]2k+1ω
l̂(2k)
N
2

= [FN
2
~veven]l̂ − ω

l̂
N [FN

2
~vodd]l̂

Using this Lemma, we can decompose DFT matrices with size 2 to an integer power. [8]

Theorem 12. Let N = 2k where k ∈ N. Then,

FN =

[
IN

2
DN

2

IN
2

−DN
2

][
FN

2

FN
2

] [
even-odd

permutation

]
.

Proof. We will prove by induction. The N = 1 is trivial.

Consider the N = 2 case:

[
1 1
1 ω2

]
=

[
1 1
1 −1

] [
1

1

] [
1 0
0 1

]
=

[
1 1
1 −1

]
The N = 4 more clearly demonstrates the logic of the proof:
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[
I2 D2

I2 −D2

] [
F2

F2

] [
even-odd

permutation

]

=


1 0 1 0
0 1 0 ω4

1 0 −1 0
0 1 0 −ω4




1 1 0 0
1 ω2 0 0
0 0 1 1
0 0 1 ω2




1 0 0 0
0 0 1 0
0 1 0 0
0 0 0 1


=


1 0 1 0
0 1 0 ω4

1 0 −1 0
0 1 0 −ω4




1 0 1 0
1 0 ω2 0
0 1 0 1
0 1 0 ω2


=


1 1 1 1
1 ω4 −1 −ω4

1 −1 1 −1
1 −ω4 −1 ω4


= F4

Then consider N = 2k,[
I2k D2k

I2k −D2k

] [
F2k−1

F2k−1

] [
~veven
~vodd

]
=

[
I2k D2k

I2k −D2k

] [
F2k−1~veven
F2k−1~vodd

]
=

[
F2k−1~veven +D2k−1F2k−1~vodd
F2k−1~veven −D2k−1F2k−1~vodd

]
Then using the Danielson-Lanczos Lemma,[

U2k−1~veven +D2k−1U2k−1~vodd
U2k−1~veven −D2k−1U2k−1~vodd

]
= U2k~v

This factorization my be applied recursively log2N = k times until [~̂v]i is computed
entirely using scalar multiplication. Doing so requires computing N roots of unity.

Then computing each [~̂v]i is order O(logN). ~̂v is N−dimensional, so computing ~̂v is
O(N logN +N) = O(N logN).
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