Math 390 Monday February 22

The - Regular
Jordan Caramida
Fam

Fri - BYOB Movies
3.2 Nilpotent Linear Transformations

Definition: \(T : V \rightarrow V \) is *nilpotent* with index \(p \) if (square matrices)

\[
T^p(v) = 0 \quad \text{for all } v \in V.
\]

(matrices: \(A^p = 0 \))

\[
T(T(T(...))) = T^p(\cdot)
\]

Then \(T \) nilpotent \(\Rightarrow \) any eigenvalue of \(T \) is \(\lambda = 0 \).

Proof: \(\lambda \) eigenvalue of \(T \) for \(\lambda x = \lambda \).

\[
0 = T^p(x) = \lambda^p x, \quad x \neq 0
\]

\[
\Rightarrow \lambda^p = 0 \Rightarrow \lambda = 0
\]

Theorem: EPM

Eigenvalues of Polynomial of a Matrix
Theorem 3.2.5

\[T: V \rightarrow V \text{ nilpotent}. \]

\[T \text{ diagonalizable } \iff T \text{ is the zero linear transformation.} \]

\[\left(T(v) = 0 \text{ for all } v \in V \right) \]

\[\uparrow \text{ basis w/ diagonal representation.} \]
Feb 11: \(A \) is similar to \(B \), \(AS = SB \)

\[\begin{align*}
 T(x) &= A x \\
 \text{find a basis of } C^n, C, \text{ and } \\
 M_{C, C}^T &= B
 \end{align*} \]

Finding S-matrix of similarity is finding a basis to provide a matrix representation.

Chapter 5 (FCA): Eigenvalues are hard. Everything else is easy.

See worksheet "CP-class"