\[P_A(x) = \det \left(xI - A \right) \quad (290) \]
\[= \prod_{i=1}^{n} (x - \lambda_i) \quad (390) \]

\[P_A(0) = \det (0I - A) = \det (-A) = (-1)^n \det (A) \]

\[P_A(0) = \prod_{i=1}^{n} (0 - \lambda_i) = (-1)^n \prod_{i=1}^{n} \lambda_i \]

This could be the definition of the determinant.

Defn: A square matrix, the **trace** of \(A \), is the sum of the diagonal entries, \(\text{tr}(A) = \sum_{i=1}^{n} [A]_{ii} \).
Given \(A \), find \(T \) that is upper-triangular & similar to \(A \). Then \(\text{SU}_T \) or \(\text{UTEC} \), says the diagonal entries are eigenvalues.

\[
\text{tr}(T) = \sum_{i=1}^{n} \lambda_i
\]

\[
\rho_{A}(x) = \prod_{i=1}^{n} (x - \lambda_i) = (x - \lambda_1)(x - \lambda_2) - \cdots (x - \lambda_n)
\]

\[
= x^n + (-\lambda_1 \cdots - \lambda_n)x^{n-1} + \cdots
\]

\[
= x^n - \text{tr}(T)x^{n-1}
\]

Any matrix similar to \(T \) (notably \(A \)) will have the same characteristic polynomial, so the trace is always the negative of the sum of the eigenvalues.

Fact: \(\det(A) \) & \(\text{tr}(A) \) are properties of a linear transformation, since they are the same for every matrix representation.
Determine Definition of a Determinant

Defn. A permutation is a 1-1 onto function from a finite set to itself.

Ex. \(X = \{1, 2, 3, 4\} \)

\[f: \begin{align*}
1 &\rightarrow 2 \\
2 &\rightarrow 3 \\
3 &\rightarrow 1
\end{align*} \]

\[\begin{pmatrix}
1 & 2 & 3 & 4 \\
2 & 3 & 1 & \uparrow
\end{pmatrix} \]

\[\text{domain} \quad \text{codomain} \]

\[\Rightarrow \text{rearrangement} \]

\[\Rightarrow \text{"natural" order} \]

Ex. \(X = \{a, b, c, d\} \)

Permutations:

\[\begin{align*}
&ba \quad ac \\
&cb \quad ad \\
&ab \quad cd \\
\end{align*} \]

"Fixes" \(b \) \& \(d \)

Identity permutation:

\[abcd \]

Inverse: \(bdac \) \& composition has inverse \(cadb \) is the identity function.
Define: Suppose $A = (a_{ij})$ is an $n \times n$ matrix. Sn set of all permutations of $1, 2, \ldots, n$. Then

$$\det (A) = \sum_{\sigma \in S_n} \text{sign} (\sigma) a_{1\sigma(1)} a_{2\sigma(2)} \ldots a_{n\sigma(n)}$$

with $\text{sign}(\sigma) \in \{+1, -1\}$,

$$\begin{vmatrix}
2 & 1 & 2 \\
3 & -2 & 1 \\
-1 & 2 & 1
\end{vmatrix}
$$

$\sigma = 312$ (1 \rightarrow 3, 2 \rightarrow 1, 3 \rightarrow 2)

$\sigma_{13} a_{1\sigma(1)} a_{2\sigma(2)} a_{3\sigma(3)}$

$= 2 \cdot (-1) \cdot (2) = -4$