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Introduction

This compilation collects SAGE commands that are useful for a student in an introductory course
in group theory. It is not intended to teach SAGE or to teach group theory. (There are many
introductory texts on group theory and more information on SAGE can be found via sagemath.org.)
Rather, by presenting commands roughly in the order a student would learn the corresponding
mathematics they might be encouraged to experiment and learn more about mathematics and
learn more about SAGE. Not coincidentally, the “E” in SAGE once stood for “Exploration.”

This guide is distributed in PDF format, and as a SAGE worksheet. The worksheet version
can be imported into the SAGE notebook environment running in a web browser, and then the
displayed chunks of code may be executed by SAGE if one clicks on the small “evaluate” link below
each cell, for a fully interactive experience.

Basic Properties of the Integers

Integer Division

a % b will return the remainder upon division of a by b. In other words, the value is the unique
integer r such that (1) 0 ≤ r < b, and (2) a = bq + r for some integer q (the quotient). Then
(a− r)/b will equal q. For example,

r = 14 % 3

q = (14 - r)/3

r, q

will return 2 for the value of r, and 4 for the value of q. Note that the “/” is integer division, where
any remainder is cast away and the result is always an integer. So, for example, 14/3 will again
equal 4, not 4.66666.

Greatest Common Divisor

The greatest common divisor of a and b is obtained with the command gcd(a,b), where in our
first uses, a and b are integers. Later, a and b can be other objects with a notion of divisibility and
“greatness,” such as polynomials. For example,

†This work is licensed under a Creative Commons Attribution-Share Alike 3.0 United States License. The LATEX
source code is available under the same license.
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gcd(2776, 2452)

will return 4.

Extended Greatest Common Divisor

The command xgcd(a,b) (“eXtended GCD”) returns a triple where the first element is the greatest
common divisor of a and b (as with the gcd(a,b) command above), but the next two elements
are the values of r and s such that ra + sb = gcd(a, b). For example, xgcd(633,331) returns
(1, 194, -371). Portions of the triple can be extracted using [ ] to access the entries of the triple,
starting with the first as number 0. For example, the following should return the result True (even
if you change the values of a and b). Studying this block of code will go a long way towards helping
you get the most out of SAGE’s output. (Note that “=” is how a value is assigned to a variable,
while as in the last line, “==” is how we determine equality of two items.)

a = 633

b = 331

extended = xgcd(a, b)

g = extended[0]

r = extended[1]

s = extended[2]

g == r*a + s*b

Divisibility

A remainder of zero indicates divisibility. So (a % b) == 0 will return True if b divides a, and
will otherwise return False. For example, (9 % 3) == 0 is True, but (9 % 4) == 0 is False. Try
predicting the output of the following before executing it in SAGE.

answer1 = ((20 % 5) == 0)

answer2 = ((17 % 4) == 0)

answer1, answer2

Factoring

As promised by the Fundamental Theorem of Arithmetic, factor(a) will return a unique expression
for a as a product of powers of primes. It will print in a nicely-readable form, but can also be
manipulated with Python as a list of pairs (pi, ei) containing primes as bases, and their associated
exponents. For example,

factor(2600)

returns 2^3 * 5^2 * 13. We can strip off pieces of the prime decomposition using two levels of [ ].
This is another good example to study in order to learn about how to drill down into Python lists.

n = 2600

decomposition = factor(n)

print n, " decomposes as ", decomposition
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secondterm = decomposition[1]

print "Base and exponent (pair) for second prime: ", secondterm

base = secondterm[0]

exponent = secondterm[1]

print "Base is ", base

print "Exponent is ", exponent

thirdbase = decomposition[2][0]

thirdexponent = decomposition[2][1]

print "Base of third term is ", thirdbase, " with exponent ", thirdexponent

With a bit more work, the factor() command can be used to factor more complicated items, such
as polynomials.

Multiplicative Inverse, Modular Arithmetic

inverse mod(a, n) yields the multiplicative inverse of a mod n (or an error if it doesn’t exist).
For example,

inverse_mod(352, 917)

yields 508. (As a check, find the integer m such that 352*508 = m*917+1.)
Then try

inverse_mod(4, 24)

and explain the result.

Powers with Modular Arithmetic

power mod(a, m, n) yields am mod n. For example,

power_mod(15, 831, 23)

returns 10. If m = −1, then this command will duplicate the function of inverse mod().

Euler φ-function

euler phi(n) will return the number of positive integers less than n, and relatively prime to n
(i.e. having greatest common divisor with n equal to 1). For example,

euler_phi(345)

should return 176. Experiment by running the following code several times:

m = random_prime(10000)

n = random_prime(10000)

m, n, euler_phi(m*n) == euler_phi(m)*euler_phi(n)

Feel a conjecture coming on? Can you generalize this result?
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Primes

The command is prime(a) returns True or False depending on if a is prime or not. For example,

is_prime(117371)

returns True, while

is_prime(14547073)

returns False since 14547073 = 1597∗9109 (as you could determine with the factor() command).
The command random prime(a,True) will return a random prime between 2 and a.

Experiment with

random_prime(10^21,True)

(Replacing True by False will speed up the search, but there will be a very small probability the
result will not be prime.)

The command prime range(a,b) returns an ordered list of all the primes from a to b − 1,
inclusive. For example,

prime_range(500,550)

returns [503, 509, 521, 523, 541, 547].
The commands next prime(a) and previous prime(a) are other ways to get a single prime

number of a desired size. Give ’em a try.

Permutation Groups

A good portion of SAGE’s support for group theory is based on routines from GAP (Groups,
Algorithms, and Programming at http://www.gap-system.org/). Groups can be described in
many different ways, such as sets of matrices or sets of symbols subject to a few defining relations.
A very concrete way to represent groups is via permutations (one-to-one and onto functions of the
integers 1 through n), using function composition as the operation in the group. SAGE has many
routines designed to work with groups of this type and they are also a good way for those learning
group theory to gain experience with the basic ideas of group theory. For both these reasons, we
will concentrate on these types of groups.

Writing Permutations

SAGE uses “disjoint cycle notation” for permutations, see any introductory text on group theory
(such as Judson, Section 4.1) for more on this. Composition occurs left to right, which is not what
you might expect and is exactly the reverse of what Judson and many others use. (There are good
reasons to support either direction, you just need to be certain you know which one is in play.)
There are two ways to write the permutation σ = (1 3)(2 5 4),

1. As a text string (include quotes): "(1,3)(2,5,4)"

2. As a Python list of “tuples”: [(1,3), (2,5,4)]
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Groups

SAGE knows many popular groups as sets of permutations. More are listed below, but for starters,
the full “symmetric group” of all possible permutations of 1 through n can be built with the
command SymmetricGroup(n).

Permutation Elements Elements of a group can be created, and composed, as follows

G = SymmetricGroup(5)

sigma = G("(1,3)(2,5,4)")

rho = G([(1,4), (1,5)])

rho^-1*sigma*rho

Available functions for elements of a permutation group include finding the order of an element, i.e.
for a permutation σ the order is the smallest power of k such that σk equals the identity element
(). For example,

sigma = G("(1,3)(2,5,4)")

sigma.order()

will return 6.
The sign of the permutation σ is defined to be 1 for an even permutation and −1 for an odd

permutation. For example,

sigma = G("(1,3)(2,5,4)")

sigma.sign()

will return −1 since σ is an odd permutation.
Many more available functions that can be applied to a permutation can be found via “tab-

completion.” With sigma defined as an element of a permutation group, in a SAGE cell, type
sigma. (Note the “.”) and then press the tab key. You’ll get a list of available functions (you may
need to scroll down to see the whole list). Experiment and explore! It’s what SAGE is all about.
You really can’t break anything.

Creating Groups

This is an annotated list of some small well-known permutation groups that can be created simply
in SAGE.
(You can find more in the source code file
/sage/devel/sage/sage/groups/perm gps/permgroup named.py)

SymmetricGroup(n): All n! permutations on n symbols.
DihedralGroup(n): Symmetries of an n-gon. Rotations and flips, 2n in total.
CyclicPermutationGroup(n): Rotations of an n-gon (no flips), n in total.
AlternatingGroup(n): Alternating group on n symbols having n!/2 elements.
KleinFourGroup(): The non-cyclic group of order 4.
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Group Functions

Individual elements of permutation groups are important, but we primarily wish to study groups as
objects on their own. So a wide-variety of computations are available for groups. Define a group,
for example

H = DihedralGroup(6)

and then a variety of functions become available.
After trying the examples below, experiment with tab-completion. Having defined H, type H.

(note the “.”) and then press the tab key. You’ll get a list of available functions (you may need
to scroll down to see the whole list). As before, experiment and explore — its really hard to break
anything.

Here’s another couple of ways to experiment and explore. Find a function that looks interesting,
say is abelian(). Type H.is abelian( (note there is just an opening parenthesis), followed
by the tab key. This will display a portion of the source code for the is abelian() function,
describing the inputs and output, possibly illustrated with example uses.

If you want to learn more about how SAGE works, or possibly extend its functionality, then
you can start by examining the complete Python source code. For example, try H.is abelian??,
which will allow you to determine that the is abelian() function is basically riding on GAP’s
IsAbelian() command and asking GAP do the heavy-lifting for us. (To get the maximum advan-
tage of using SAGE it helps to know some basic Python programming, but it is not required.)

OK, on to some popular command for groups. If you are using the worksheet, be sure you have
defined the group H as the dihedral group D6, since we won’t keep repeating its definition below.

Abelian?

The command

H.is_abelian()

will return False since D6 is a non-abelian group.

Order

The command

H.order()

will return 12 since D6 is a group of with 12 elements.

All Elements

The command

H.list()

will return all of the elements of H in a fixed order as a Python list. Indexing ([ ]) can be used
to extract the individual elements of the list, remembering that counting the elements of the list
begins at zero.
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elements = H.list()

elements[3]

Cayley Table

The command

H.cayley_table()

will construct the Cayley table (or “multiplication table”) of H. The display uses the elements
of the group in the same order as the list() command, and denoting them as xN where N is an
integer. For example to determine the element in the table named x4,

H.list()[4]

Center

The command H.center() will return a subgroup that is the center of the group H (see Exercise
2.46 in Judson). Try

H.center().list()

to see which elements of H commute with every element of H.

Cayley Graph

For fun, try show(H.cayley graph()).

Subgroups

Cyclic Subgroups

If G is a group, and a is an element of the group (try a=G.random element()), then

a=G.random_element()

H=G.subgroup([a])

will create H as the cyclic subgroup of G with generator a.
For example the code below will (1) create G as the symmetric group on five symbols, (2) specify

sigma as an element of G, (3) use sigma as the generator of a cyclic subgroup H, (4) list all the
elements of H. In more mathematical notation, we might write 〈(1 2 3)(4 5)〉 = H ⊆ G = S5.

G=SymmetricGroup(5)

sigma=G("(1,2,3)(4,5)")

H=G.subgroup([sigma])

H.list()

Experiment by trying different permutations for sigma and observing the effect on H.

7



Cyclic Groups

Groups that are cyclic themselves are both important, and rich in structure. The command
CyclicPermutationGroup(n) will create a permutation group that is cyclic with n elements. Con-
sider the following example (note that the indentation of the third line is critical) which will list
the elements of a cyclic group of order 20, preceded by the order of each element.

n=20

CN = CyclicPermutationGroup(n)

for g in CN:

print g.order(), " ", g

By varying the size of the group (change the value of n) you can begin to illustrate some of the
structure of a cyclic group (for example, try a prime).

We can cut/paste an element of order 5 from the output above (in the case when the cyclic
group has 20 elements) and quickly build a subgroup,

rho = C20("(1,17,13,9,5)(2,18,14,10,6)(3,19,15,11,7)(4,20,16,12,8)")

H = C20.subgroup([rho])

H.list()

For a cyclic group, the following command will list all of the subgroups.

C20.conjugacy_classes_subgroups()

Be careful, this command uses some more advanced ideas, and will not usually list all of the
subgroups of a group — here we are relying on special properties of cyclic groups (but see the next
section).

If you are viewing this as a PDF, you can safely skip over the next bit of code. However, if you
are viewing this as a worksheet in Sage, then this is a place where you can experiment with the
structure of the subgroups of a cyclic group. In the input box, enter the order of a cyclic group
(numbers between 1 and 40 are good initial choices) and Sage will list each subgroup as a cyclic
group with its generator. The factorization at the bottom might help you formulate a conjecture.

%auto

@interact

def _(n = input_box(default=12, label = "Cyclic group of order:", type=Integer) ):

cyclic = CyclicPermutationGroup(n)

subgroups = cyclic.conjugacy_classes_subgroups()

html( "All subgroups of a cyclic group of order $%s$\n" % latex(n) )

table = "$\\begin{array}{ll}"

for sg in subgroups:

table = table + latex(sg.order()) + \

" & \\left\\langle" + latex(sg.gens()[0]) + \

"\\right\\rangle\\\\"

table = table + "\\end{array}$"

html(table)

html("\nHint: $%s$ factors as $%s$" % ( latex(n), latex(factor(n)) ) )
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All Subgroups

If H is a subgroup of G and g ∈ G, then gHg−1 = {ghg−1 | h ∈ G} will also be a subgroup of
G. If G is a group, then the command G.conjugacy classes subgroups() will return a list of
subgroups of G, but not all of the subgroups. However, every subgroup can be constructed from
one on the list by the gHg−1 construction with a suitable g. As an illustration, the code below
(1) creates K as the dihedral group of order 24, D12, (2) stores the list of subgroups output by
K.conjugacy classes subgroups() in the variable sg, (3) prints the elements of the list, (4)
selects the second subgroup in the list, and lists its elements.

K=DihedralGroup(12)

sg = K.conjugacy_classes_subgroups()

print "sg:\n", sg

print "\nAn order two subgroup:\n", sg[1].list()

It is important to note that this is a nice long list of subgroups, but will rarely create every such
subgroup. For example, the code below (1) creates rho as an element of the group K, (2) creates
L as a cyclic subgroup of K, (3) prints the two elements of L, and finally (4) tests to see if this
subgroup is part of the output of the list sg created just above (it is not).

rho = K("(1,4)(2,3)(5,12)(6,11)(7,10)(8,9)")

L=PermutationGroup([rho])

print L.list()

print L in sg

Symmetry Groups

You can give SAGE a short list of elements of a permutation group and SAGE will find the smallest
subgroup that contains those elements. We say the list “generates” the subgroup. We list a few
interesting subgroups you can create this way.

Symmetries of an Equilateral Triangle

Label the vertices of an equilateral triangle as 1, 2 and 3. Then any permutation of the vertices will
be a symmetry of the triangle. So either SymmetricGroup(3) or DihedralGroup(3) will create the
full symmetry group.

Symmetries of an n-gon

A regular, n-sided figure in the plane (an n-gon) will have 2n symmetries, comprised of n rotations
(including the trivial one) and n “flips” about various axes. The dihedral group DihedralGroup(n)

is frequently defined as exactly the symmetry group of an n-gon.

Symmetries of a Tetrahedron

Label the 4 vertices of a regular tetahedron as 1, 2, 3 and 4. Fix the vertex labeled 4 and roate the
opposite face through 120 degrees. This will create the permutation/symmetry (1 2 3). Similarly,
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fixing vertex 1, and rotating the opposite face will create the permutation (2 3 4). These two
permutations are enough to generate the full group of the twelve symmetries of the tetrahedron.
Another symmetry can be visualized by running an axis through the midpoint of an edge of the
tetrahedron through to the midpoint of the opposite edge, and then rotating by 180 degrees about
this axis. For example, the 1–2 edge is opposite the 3–4 edge, and the symmetry is described by
the permutation (1 2)(3 4). This permutation, along with either of the above permutations will also
generate the group. So here are two ways to create this group,

tetra_one = PermutationGroup(["(1,2,3)", "(2,3,4)"])

tetra_two = PermutationGroup(["(1,2,3)", "(1,2)(3,4)"])

This group has a variety of interesting properties, so it is worth experimenting with. You may
also know it as the “alternating group on 4 symbols,” which SAGE will create with the command
AlternatingGroup(4).

Symmetries of a Cube

Label vertices of one face of a cube with 1, 2, 3 and 4, and on the opposite face label the vertices
5, 6, 7 and 8 (5 opposite 1, 6 opposite 2, etc.). Consider three axes that run from the center of a
face to the center of the opposite face, and consider a quarter-turn rotation about each axis. These
three rotations will construct the entire symmetry group. Use

cube = PermutationGroup(["(3,2,6,7)(4,1,5,8)",

"(1,2,6,5)(4,3,7,8)", "(1,2,3,4)(5,6,7,8)"])

cube.list()

A cube has four distinct diagonals (joining opposite vertices through the center of the cube).
Each symmetry of the cube will cause the diagonals to arrange differently. In this way, we can
view an element of the symmetry group as a permutation of four “symbols” — the diagonals. It
happens that each of the 24 permutations of the diagonals is created by exactly one symmetry of
the 8 vertices of the cube. So this subgroup of S8 is “the same as” S4. In SAGE,

cube.is_isomorphic(SymmetricGroup(4))

will test to see if the group of symmetries of the cube are “the same as” S4 and so will return True.
Here is an another way to create the symmetries of a cube. Number the six faces of the cube

as follows: 1 on top, 2 on the bottom, 3 in front, 4 on the right, 5 in back, 6 on the left. Now the
same rotations as before (quarter-turns about axes through the centers of two opposite faces) can
be used as generators of the symmetry group,

cubeface = PermutationGroup(["(1,3,2,5)","(1,4,2,6)","(3,4,5,6)"])

cubeface.list()

Again, this subgroup of S6 is “same as” the full symmetric group, S4,

cubeface.is_isomorphic(SymmetricGroup(4))

It turns out that in each of the above constructions, it is sufficient to use just two of the three
generators (any two). But one generator is not enough. Give it a try, and use SAGE to convince
yourself that a generator can be sacrificed in each case.
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Normal Subgroups

Checking Normality

The code below (1) begins with the alternating group, A4, (2) specifies three elements of the group
(the three symmetries of the tetrahedron that are 180 degree rotations about axes through midpoints
of opposite edges), (3) uses these three elements to generate a subgroup, and finally (4) illustrates
the command for testing if the subgroup H is a normal subgroup of the group A4.

A4=AlternatingGroup(4)

r1=A4("(1,2)(3,4)")

r2=A4("(1,3)(2,4)")

r3=A4("(1,4)(2,3)")

H=A4.subgroup([r1,r2,r3])

H.is_normal(A4)

Quotient Group

Extending the previous example, we can create the quotient (factor) group of A4 by H.

A4.quotient_group(H)

will return a permutation group generated by (1,2,3). As expected this is a group of order 3.
Notice that we do not get back a group of the actual cosets, but instead we get a group isomorphic
to the factor group.

Simple Groups

It is easy to check to see if a group is void of any normal subgroups.

print AlternatingGroup(5).is_simple()

print AlternatingGroup(4).is_simple()

will print True and then False.

Composition Series

For any group, it is easy to obtain a composition series. There is an element of randomness in
the algorithm, so you may not always get the same results. (But the list of factor groups is
unique, according to the Jordan-Hölder theorem.) Also, the subgroups generated sometimes have
more generators than necessary, so you might want to “study” each subgroup carefully by checking
properties like its order. An interesting example is:

DihedralGroup(105).composition_series()

The output will be a list of 5 subgroups of D105, each a normal subgroup of its predecessor.
Several other series are possible, such as the derived series. Use tab-completion to see the

possibilities.
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Conjugacy

Given a group G, we can define a relation ∼ on G by: for a, b ∈ G, a ∼ b if and only if there exists
an element g ∈ G such that gag−1 = b.

Since this is an equivalence relation, there is an associated partition of the elements of G into
equivalence classes. For this very important relation, the classes are known as “conjugacy classes.”
A representative of each of these equivalence classes can be found as follows. Suppose G is a
permutation group, then G.conjugacy classes representatives() will return a list of elements
of G, one per conjugacy class.

Given an element g ∈ G, the “centralizer” of g is the set C(g) = {h ∈ G | hgh−1 = g}, which is
a subgroup of G. A theorem tells us that the size of each conjugagcy class is the order of the group
divided by the order of the centralizer of an element of the class. With the following code we can
determine the size of the conjugacy classes of the full symmetric group on 5 symbols,

G = SymmetricGroup(5)

group_order = G.order()

reps = G.conjugacy_classes_representatives()

class_sizes = []

for g in reps:

class_sizes.append( group_order/G.centralizer(g).order() )

print class_sizes

This should produce the list [1, 10, 15, 20, 20, 30, 24] which you can check sums to 120, the
order of the group. You might be able to produce this list by counting elements of the group S5

with identical cycle structure (which will require a few simple combinatorial arguments).

Sylow Subgroups

Sylow’s Theorems assert the existence of certain subgroups. For example, if p is a prime, and pr

divides the order of a group G, then G must have a subgroup of order pr. Such a subgroup could
be found among the output of the conjugacy classes subgroups() command by checking the
orders of the subgroups produced. The map() command is a quick way to do this. The symmetric
group on 8 symbols, S8, has order 8! = 40, 320 and is divisible by 27 = 128. Let’s find one example
of a subgroup of permutations on 8 symbols with order 128. The next command takes a few minutes
to run, so go get a cup of coffee after you set it in motion.

G = SymmetricGroup(8)

subgroups = G.conjugacy_classes_subgroups()

map( order, subgroups )

The map(order, subgroups) command will apply the order() method to each of the subgroups
in the list subgroups. The output is thus a large list of the orders of many subgroups (296 to be
precise). if you count carefully, you will see that 259th subgroup has order 128. You can retrieve
this group for further study by referencing it as subgroups[258] (remember that counting starts
at zero).
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If pr is the highest power of p to divide the order of G, then a subgroup of order pr is known
as a “Sylow p-subgroup.” Sylow’s Theorems also say any two Sylow p-subgroups are conjugate,
so the output of conjugacy classes subgroups() should only contain each Sylow p-subgroup
once. But there is an easier way, sylow subgroup(p) will return one. Notice that the argument
of the command is just the prime p, not the full power pr. Failure to use a prime will generate an
informative error message.
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Groups of Small Order as Permutation Groups

We list here constructions, as permutation groups, for all of the groups of order less than 16.
Size Construction Notes

1 SymmetricGroup(1) Trivial

2 SymmetricGroup(2) Also CyclicPermutationGroup(2)

3 CyclicPermutationGroup(3) Prime order

4 CyclicPermutationGroup(4) Cyclic
4 KleinFourGroup() Abelian, non-cyclic

5 CyclicPermutationGroup(5) Prime order

6 CyclicPermutationGroup(6) Cyclic
6 SymmetricGroup(3) Non-abelian, also DihedralGroup(3)

7 CyclicPermutationGroup(7) Prime order

8 CyclicPermutationGroup(8) Cyclic
8 D1=CyclicPermutationGroup(4)

D2=CyclicPermutationGroup(2)

G=direct product permgroups([D1,D2])

Abelian, non-cyclic

8 D1=CyclicPermutationGroup(2)

D2=CyclicPermutationGroup(2)

D3=CyclicPermutationGroup(2)

G=direct product permgroups([D1,D2,D3])

Abelian, non-cyclic

8 DihedralGroup(4) Non-abelian
8 PermutationGroup(["(1,2,5,6)(3,4,7,8)",

"(1,3,5,7)(2,8,6,4)" ])

Quaternions
The two generators are I and J

9 CyclicPermutationGroup(9) Cyclic
9 D1=CyclicPermutationGroup(3)

D2=CyclicPermutationGroup(3)

G=direct product permgroups([D1,D2])

Abelian, non-cyclic

10 CyclicPermutationGroup(10) Cyclic
10 DihedralGroup(5) Non-abelian

11 CyclicPermutationGroup(11) Prime order

12 CyclicPermutationGroup(12) Cyclic
12 D1=CyclicPermutationGroup(6)

D2=CyclicPermutationGroup(2)

G=direct product permgroups([D1,D2])

Abelian, non-cyclic

12 DihedralGroup(6) Non-abelian
12 AlternatingGroup(4) Non-abelian, symmetries of tetrahedron
12 PermutationGroup(["(1,2,3)(4,6)(5,7)",

"(1,2)(4,5,6,7)"])

Non-abelian
Semi-direct product Z3 o Z4

13 CyclicPermutationGroup(13) Prime order

14 CyclicPermutationGroup(14) Cyclic
14 DihedralGroup(7) Non-abelian

15 CyclicPermutationGroup(15) Cyclic
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