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Problem

Problem Statement

For a regular graph on n vertices, of degree r ,
determine the number of matchings with m edges.

A matching is a subgraph of disjoint edges.

Regularity is key!

Notation:{ }
is the number of subgraphs that are 2-matchings.
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Quick and Dirty

1-Matchings

EZ { }
=

nr

2

Depends only on n and r .

Independent of the particular graph.
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Quick and Dirty

2-Matchings

Choose a vertex, choose two incident edges:{ }
= n

(
r − 1

2

)

Total of all 2-edge subgraphs:(nr
2

2

)
=

{ }
+

{ }
Solve: { }

=
1

8
n r (nr − 4r + 2)
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Quick and Dirty

3-Matchings

Five possible subgraphs on three edges. How many of each?

We are after the number of 3-matchings. Eventually.
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Quick and Dirty

3-Matchings, Part I

Choose a vertex, choose three incident edges:{ }
= n

(
r − 1

3

)

Start with a 2-matching, choose one of 4 vertices, add one of r − 1
incident edges. Builds paths of length 3, and subgraphs with a path of
length 2 and a disjoint edge.

Double-counts each of these though!

4(r − 1)

{ }
= 2

{ }
+ 2

{ }
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Quick and Dirty

3-Matchings, Part II

Start with a path of length 2, choose one of 2 end vertices, add one of
r − 1 incident edges. Builds paths of length 3, and triangles.

Double-counts paths, overcounts triangles by a factor of 6.

2(r − 1)

{ }
= 2

{ }
+ 6

{ }

Sum all subgraphs on 3 edges:(nr
2

3

)
=

{ }
+

{ }
+

{ }
+

{ }
+

{ }
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Quick and Dirty

3-Matchings, Solution

Solve 4 linear equations in 5 unknowns:{ }
=

1

48
nr

(
n2r2 − 12nr2 + 40r2 + 6nr − 48r + 16

)
−

{ }

Depends on n and r and the number of triangles.

Independent of the particular graph.
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Graphs

General Approach

Can’t keep this up. Need a systematic approach.

Begin with a subgraph with m edges and a vertex of degree 1.

Remove edge incident to degree 1 vertex. Call other endpoint w .

Identify vertices “isomorphic” to w .

Add back a single edge, attaching one end at vertices like w .

Determine the types of subgraphs formed.

Determine the amount of overcounting.
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Graphs

Example, 4 Edges

Begin with a path having 4 edges.
Remove an edge incident to a vertex of degree 1. Label other endpoint w .
In the path on 3 edges that remains, there is one other vertex like w .

Add back an edge at w , considering all vertices as possibilities for the
other end of the new edge.
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Graphs

Example, 4 Edges

What subgraphs result? How many of each? Overcounting factor?

Type Overcount

Triangle w/Pendant 2x

Path 2x

Circuit 8x
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Graphs

Example, 4 Edges

2 vertices like w .
r − 1 ways to attach back an edge.

Counting a set of subgraphs (each with a labeled vertex at w) in two
different ways yields:

2(r − 1)

{ }
= 2

{ }
+ 2

{ }
+ 8

{ }
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Graphs

System of Linear Equations

Create a system of linear equations in subgraph counts.

Coefficients are constants, functions of n and r .

Apply to any regular graph.

Subgraphs with no degree 1 vertices are “free” variables.

Subgraphs with degree 1 vertices are dependent variables.

Order subgraph types on edges, then number of degree 1 vertices.

System has lower-triangular coefficient matrix, nearly homogeneous.
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4-Matchings

4-Matchings

All subgraphs on 4 edges or less. w is adjacent to open-circle vertex.

G 0,0,1 G 1,2,1 G 2,2,1 G 2,4,1 G 3,0,1

G 3,2,1 G 3,3,1 G 3,4,1 G 3,6,1 G 4,0,1

G 4,1,1 G 4,2,1 G 4,2,2 G 4,3,1 G 4,4,1

G 4,4,2 G 4,4,3 G 4,5,1 G 4,6,1 G 4,8,1
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4-Matchings

g0,0,1 = 1

n r g0,0,1 = 2 g1,2,1

2(r − 1) g1,2,1 = 2 g2,2,1

(n − 2) r g1,2,1 = 2 g2,2,1 + 4 g2,4,1

2(r − 1) g2,2,1 = 6 g3,0,1 + 2 g3,2,1

1(r − 2) g2,2,1 = 3 g3,3,1

4(r − 1) g2,4,1 = 2 g3,2,1 + 2 g3,4,1

(n − 4) r g2,4,1 = 2 g3,4,1 + 6 g3,6,1

3(r − 2) g3,0,1 = 1 g4,1,1

(n − 3) r g3,0,1 = 1 g4,1,1 + 2 g4,2,1

2(r − 1) g3,2,1 = 8 g4,0,1 + 2 g4,1,1 + 2 g4,2,2

2(r − 2) g3,2,1 = 2 g4,1,1 + 2 g4,3,1

2(r − 1) g3,4,1 = 6 g4,2,1 + 2 g4,2,2 + 2 g4,4,1

1(r − 3) g3,3,1 = 4 g4,4,2

2(r − 1) g3,4,1 = 2 g4,2,2 + 1 g4,3,1 + 4 g4,4,3

1(r − 2) g3,4,1 = 1 g4,3,1 + 3 g4,5,1

6(r − 1) g3,6,1 = 2 g4,4,1 + 2 g4,6,1

(n − 6) r g3,6,1 = 2 g4,6,1 + 8 g4,8,1

Rob Beezer (U Puget Sound) Counting Subgraphs in Regular Graphs UWT Workshop Oct 14 ‘06 15 / 21



4-Matchings

g0,0,1 = 1

g1,2,1 =
nr

2

g2,2,1 =
n (−1 + r) r

2

g2,4,1 =
nr (2− 4r + nr)

8

g3,2,1 =
n(−1 + r)2r

2
− 3g3,0,1

g3,3,1 =
n (−2 + r) (−1 + r) r

6

g3,4,1 =
n (−1 + r) r (4− 6r + nr)

4
+ 3g3,0,1

g3,6,1 =
nr

(
16− 48r + 6nr + 40r2 − 12nr2 + n2r2

)
48

− g3,0,1

g4,1,1 = (−6 + 3r) g3,0,1

g4,2,1 =
(
3− 3r +

nr

2

)
g3,0,1

g4,2,2 =
n(−1 + r)3r

2
+ (9− 6r) g3,0,1 − 4g4,0,1

g4,3,1 =
n (−2 + r) (−1 + r)2r

2
+ (12− 6r) g3,0,1

g4,4,1 =
n(−1 + r)2r (6− 8r + nr)

4
+

(
−21 + 18r − 3nr

2

)
g3,0,1 + 4g4,0,1

g4,4,2 =
n (−3 + r) (−2 + r) (−1 + r) r

24

g4,4,3 =
n(−1 + r)2r (8− 9r + nr)

8
+ (−9 + 6r) g3,0,1 + 2g4,0,1

g4,5,1 =
n (−2 + r) (−1 + r) r (6− 8r + nr)

12
+ (−6 + 3r) g3,0,1

g4,6,1 =
n (−1 + r) r

(
40− 104r + 10nr + 72r2 − 16nr2 + n2r2

)
16

+

(
24− 21r +

3nr

2

)
g3,0,1 − 4g4,0,1

g4,8,1 =
nr

384

(
240− 960r + 76nr + 1344r2 − 240nr2 + 12n2r2 − 672r3 + 208nr3 − 24n2r3 + n3r3

)
+

(
−6 + 6r − nr

2

)
g3,0,1 + g4,0,1
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4-Matchings

4-Matchings Solution

{ }
=

nr

384

(
240− 960r + 76nr + 1344r2 − 240nr2+

12n2r2 − 672r3 + 208nr3 − 24n2r3 + n3r3
)
+(

−6 + 6r − nr

2

) { }
+

{ }

Applys to any regular graph.

Depends on n, r , and the number of triangles and squares.
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Designs

Designs

The pair (V ,B) is a t-(v , k, λ) design if V is a set of v elements called
points (or vertices) and B is a set of k element subsets of V called blocks
(or lines) with the property that every t-element subset of V is a subset of
exactly λ blocks from B.

Fano Plane
Projective Plane of Order 2
Steiner Triple System
2-(7, 3, 1) Design

Blocks:
123 345 567 257 147 367 246
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Designs

Generalize to Designs

Horak, et al; results for Steiner Triple Systems, 2-(v , 3, 1) designs.

A regular graph is just a 1-(n, 2, r) design.

In a design, subgraphs are just subsets of blocks, “configurations.”

Same types of linear equations.

Coefficients depend on v and λ (for a fixed choice of t and k).

“Free” variables are configuration counts for configurations where
every block has more than t points that occur in two or more blocks
of the configuration.

For graphs, this is “every edge has 2 vertices of degree 2 or more.”
i.e. no vertices of degree 1.
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Applications

Applications

Graphs of high girth lack small cycles.

Small subgraphs are acyclic.

“Free” variables are all zero.

Counts for small subgraphs are determined just by n and r .

Existence of designs?

Conclude that configuration counts are negative or fractional?
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