
Computing Discreetly with Sage
A Tour

Robert A. Beezer
University of Puget Sound

January 25, 2018

1 What is Sage?

• An open source system for advanced mathematics.

• An open source mathematics distribution (like Linux) with Python as
the glue.

• A tool for learning and teaching mathematics.

• A tool for mathematics research.

Mission Statement Create a viable free open source
alternative to Magma, Maple, Mathematica, and Mat-
lab.

• Created in 2005 by William Stein.

• Free and open, GPL license.

• Includes about 100 open source packages.

• Installed: 53,230 files, 15,278,715 lines of code (v 8.1).

• Now has around 540,000 lines of new code, by several hundred mathematician-
programmers.

Some of the 100 packages included:
• Groups, Algorithms, Programming (GAP) - group theory

• PARI - rings, finite fields, field extensions

• Singular - commutative algebra

• SciPy/NumPy - scientific computing, numerical linear algebra

• Integer Matrix Library (IML) - integer, rational matrices

• CVXOPT - linear programming, optimization

• NetworkX - graph theory

• Pynac - symbolic manipulation

• Maxima - calculus, differential equations

2 Basic Combinatorial Numbers
2.1 Binomial Coefficients
The number of 3-sets chosen from a 10-set,

(
10
3

)
.

binomial (10, 3)

The coefficients of an expansion of (a+ b)n.
var('a,␣b ')
expr = (a+b)^10
expr.expand ()

All of the coefficients.
bc = binomial_coefficients (10)
bc

A Python dictionary, indexed by powers of the two variables in the expansion.
bc[(3, 7)]

Tote up all of these binomial coefficients, to get 210. (Size of the power set, or
the result of setting a = 1 and b = 1).
sum(bc.values ())

Actual subsets of size 3 from a 10-set; one way to understand a binomial
coefficient.
S = list("AIMS -WOMEN")
S

sub = Subsets(S, 3)
sub

sub is a “generator”. We can list the possibilities.
sub.list()

We can iterate over sub.
for three in sub:

print three

2

2.2 Catalan Numbers

catalan_number (8)

Cn = 1
n+1

(
2n
n

)
= (2n)!

(n+1)!n!

(1/9)*binomial (16, 8)

2.3 Bell Numbers
In honor of Eric Temple Bell.
bell_number (6)

Number of partitions of a set into disjoint non-empty sets.
S = list(' MATHS ')
part = SetPartitions(S)
part

part.list()

That’s hard to read.
part [34]

len(part)

A double-check.
part.cardinality ()

2.4 Stirling Numbers
Stirling numbers come in two flavors, “first” and “second”, or “cycle” and
“subset”. We’ll demonstrate the first.
stirling_number1 (6, 3)

The number of permutations on n symbols (in cycle notation) having exactly
k cycles,

{
n
k

}
.

perm = Permutations (6)
a = perm [134]
a

In cycle notation.
a.cycle_string ()

Now we get the trivial cycles. List length is what we want.
a.cycle_tuples ()

Collect all permutations with 3 cycles.
three = [p for p in perm if len(p.cycle_tuples ())==3]
three

How many?
len(three)

3

3 (Some) Areas of Discrete Mathematics
3.1 Graph Theory
Create graphs in a natural way:

harary = Graph ([(0 ,1), (1,2), (2,3), (3,0), (1,3)])
harary

harary.plot()

harary.num_verts (), harary.num_edges ()

harary.is_planar ()

H = harary.hamiltonian_cycle ()
H.plot()

harary.degree_sequence ()

sorted(harary.degree_sequence ())

There are many pre-defined graphs (digraphs, too):

graphs.

Constant time generation of free trees, by B. Richmond, A. Odlyzko, B.D.
McKay

trees_iterator = graphs.trees (8)
T8 = list(trees_iterator)
T8

From a path to a star:

[tree.diameter () for tree in T8]

Visually:

graphs_list.show_graphs(T8)

3.2 Group Theory
Prototypical use of Sage: permutation groups. Built from the mature open
source package GAP (Groups, Algorithms, Programming).

G = DihedralGroup (8)
G

G.list()

G.is_abelian ()

sg = G.subgroups ()
[H.order() for H in sg]

4

H = sg[14]
H.list()

H.is_normal(G)

3.3 Put Them Together: Tower of Hanoi

• graphs.HanoiTowerGraph(n, d)

• Generalize to n pegs and d disks

• State graph: intermediate configurations, edges are “one move”

• Labels: d-tuple, large disk to small disk; entries are peg numbers

• Example: n = 3, d = 4: (2, 0, 2, 1)

T = graphs.HanoiTowerGraph (3, 4, positions=True)
T.show(figsize =12)

A solution is path between states “all the disks on one peg” and “all the disks
on another peg.”

solution=T.shortest_path ((0,0,0,0), (1,1,1,1))
solution

Minimum number of moves:

len(solution) - 1

T.diameter ()

More general:

T = graphs.HanoiTowerGraph (4, 3, positions=True)
T.show(figsize =12)

T = graphs.HanoiTowerGraph (4, 4, labels=False ,
positions=True)

T.show(figsize =12)

Forget about graphics, work with graph itself.

5

T = graphs.HanoiTowerGraph (4, 8, labels=False ,
positions=False)

T.num_verts ()

Code vertices to integers: d-tuples, base n. All disks on peg 0, move to all
disks on peg 3.

solution = T.shortest_path (0, 4^8-1)
solution

len(solution)-1

Theorem: automorphisms of the state graph are just the obvious ones (renum-
ber pegs)

T = graphs.HanoiTowerGraph (4, 6, labels=False ,
positions=False)

A = T.automorphism_group ()
A.order ()

S4 = SymmetricGroup (4)
S4.is_isomorphic(A)

Automorphisms are computed via Brendan McKay’s nauty algorithm, once
re-implemented as NICE.

3.4 Linear Algebra
3.4.1 Exact Linear Algebra

Many possible fields and rings: finite fields, field extensions, algebraic numbers.
Over the integers and rationals powered by Integer Matrix Library (IML).

A = matrix(QQ,
[[1, -2, 3, 2, -1, -4, -3, 4],
[3, -2, 2, 5, 0, 6, -5, -5],
[0, -1, 2, 1, -2, -4, -1, 4],
[-3, 2, -1, -1, -6, -3, 5, 3],
[3, -4, 4, 0, 7, -7, -7, 6]])
A

A.rref()

b = vector(QQ, [2, -1, 3, 4, -3])
A.solve_right(b)

And it is fast. 1000× 1000 matrix with single digit integer entries.

A = random_matrix(ZZ, 1000, 1000, x=-9, y=9)
%time A.determinant ()

We can combine linear algebra with graph theory (aka “algebraic graph the-
ory”).

K = graphs.KneserGraph (8,3)
K.plot()

6

adj = K.adjacency_matrix ()
adj

K.spectrum ()

A small “singular graph.” (I. Sciriha, 2007)

S = graphs.CycleGraph (4)
S.add_vertices ([4, 5, 6])
S.add_edges ([(2 ,4), (2,5), (2,6)])
S.add_edges ([(3 ,4), (3,5), (3,6)])
S.plot()

adj = S.adjacency_matrix ()
ker = adj.kernel ()
ker

Notice this is the kernel over the integers, and is computed as a module. It is
easy to upgrade to the rationals.

adjQ = adj.change_ring(QQ)
kerQ = adjQ.kernel ()
kerQ

A matrix kernel (null space) is a vector space, and has all the attendant prop-
erties.

kerQ.dimension ()

kerQ.basis ()

3.4.2 Numerical Linear Algebra

Numerical linear algebra is supplied by SciPy, through to LAPACK, ATLAS,
BLAS.

A matrix of double-floating point real numbers (RDF).

B = matrix(RDF ,
[[0.4706 , 0.3436 , 0.7156 , 0.1706 , 0.3863 , 0.222, -0.9673],
[0.9433 , -0.7333, -0.2906, -0.5203, 0.3548 , 0.7577 , 0.3936] ,
[-0.8998 , 0.9269 , -0.9646, -0.2294, -0.8171, 0.4568 , 0.5949] ,
[0.8814 , 0.89, -0.2059, 0.7434 , -0.1642, 0.6918 , 0.7113] ,
[-0.0034 , -0.9842, 0.7213 , -0.7196, -0.7422, 0.3335 , 0.5829] ,
[-0.5676 , 0.6433 , -0.2296, 0.2681 , 0.2992 , 0.6988 , 0.3332] ,
[0.0366 , -0.5788, 0.5882 , 0.1559 , -0.6434, 0.871, -0.6518]])
B

And the QR decomposition of B.

Q, R = B.QR()
Q

(Q.conjugate_transpose ()*Q).round (4)

R.round (4)

(Q*R-B).round (4)

7

3.4.3 Image Compression

import pylab
A_image = pylab.mean(pylab.imread(' images/mystery.png '), 2)
@interact
def svd_image(i=(1 ,(1..194)), display_axes=True):

u,s,v = pylab.linalg.svd(A_image)
A = sum(s[j]*pylab.outer(u[0:,j], v[j,0:]) for j in

range(i))
g =

graphics_array ([matrix_plot(A),matrix_plot(A_image)])
show(matrix_plot(A), axes=display_axes , figsize =(6,8))
html(' <h2>Compressed␣using␣%s␣singular␣values </h2> ' %i)

3.5 Simple Number Theory
Sage was born of necessity to do number theory.

p = next_prime (10^25)
q = next_prime (10^25+5*10^24+10^12)
m = p*q
print p, ' ␣x␣ ' , q, ' = '

print m

Factor 50-digit number (~166 bits).

m.factor ()

Euler ϕ function. (“totient” function.)

euler_phi (100)

Integers less than 100 and relatively prime to 100. (Note the srange function
to generate Sage integers.)

relp = [x for x in srange (100) if gcd(x, 100) == 1]
relp

len(relp)

Fact:
∑
d|n

ϕ(d) = n

Proof: Group the fractions, i

n
, 0 ≤ i ≤ n−1, by denominators once written

in reduced terms.

n = 100
sum([euler_phi(d) for d in divisors(n)]) == n

3.6 Linear Recurrence Relations
Numbers of certain objects can sometimes be counted by recurrence relations.
We would like closed-form expressions for terms of sequences defined this way.

8

3.6.1 Perrin’s Sequence

Perrin Sequence:
p(0) = 3; p(1) = 0; p(2) = 2
p(n) = p(n− 2) + p(n− 3)
Looks like the Fibonacci sequence, but “skips back” two terms, not one.
Compute by hand: 3, 0, 2, 3, 2, 5, 5, 7, 10, 12, 17, . . .
This is in Sloane’s Online Encyclopedia of Integer Sequences as sequence

number A001608.
A brute-force approach with a Python function. Impractical above about

n = 60.

def perrin(n):
if n == 0:

return 3
elif n == 1:

return 0
elif n == 2:

return 2
else:

return perrin(n-2) + perrin(n-3)

perrin (10)

perrin (20)

perrin (23).factor ()

Fact: If q is prime, then q divides p(q).
(First composite number that behaves this way is 5212.)

Generating function: f(x) =

∞∑
i=0

pi x
i

Theory gives easy computation for Perrin sequence, denominator comes
from recurrence relation, numerator is simple polynomial multiplication.

f(x) =
3− x2

1− x2 − x3
.

We can expand f as a Taylor series.

var(' x ')
f=(3-x^2)/(1-x^2-x^3)
f

series = f.taylor(x, 0, 20)
series

[series.coefficient(x, i) for i in range (20)]

3.6.2 Decompose with Partial Fractions

Partial Fractions can simplify a rational generating function. New, three-term
recurrence.

a(0) = 7; a(1) = 41; a(2) = 204
a(n) = 7a(n− 1)− 12a(n− 2) + 10a(n− 3)
Generating function—the rational function:

9

http://oeis.org/A001608

h = (x^2 - 8*x + 7)/(1 - 7*x + 12*x^2 -10*x^3)
h

Check a(3), first new term of the sequence:

7*204 -12*41 + 10*7

h.taylor(x, 0, 3)

Create partial fraction decomposition and examine the pieces:

h.partial_fraction ()

denom1 = 1/(2*x^2 - 2*x + 1)
denom1.taylor(x, 0, 30)

denom2 = 1/(5*x - 1)
denom2.taylor(x, 0, 8)

3.6.3 Using SymPy

SymPy is a pure Python package included in Sage, but not integrated with
Sage.

docs.sympy.org/dev/modules/solvers/solvers.html#recurrence-equtions
(sic)

Import pieces of the SymPy library.

from sympy import Function , rsolve
from sympy.abc import n
y = Function(' y ')

Define the recurrence as an expression in y(·) that equals zero.

k = y(n+3)- 7*y(n+2) + 12*y(n+1) - 10*y(n)

And solve:

rsolve(k, y(n))

rsolve(k, y(n), {y(0):7, y(1):41, y(2) :204})

4 Sage Environs
Sage ships with a Jupyter notebook server, which is a web application that
provides a convenient interface to Sage commands, components and features.

Much of this section will only behave properly within a Jupyter
Notebook server using a Sage kernel. However some portions are trans-
ferable to command-line use or via the Sage Cell Server.

10

http://docs.sympy.org/dev/modules/solvers/solvers.html#recurrence-equtions

4.1 (Some) Indiscreet Mathematics
A symbolic derivative (from Maxima).

f(x) = x^3*e^-x
df = f.derivative ()
df

Derivative of a function is again a function, and can be evaluated.

slope = df(4)
slope

Arbitrary precision numerical values on request (from MPmath).

N(slope , digits =20)

Can display plots in the notebook (via matplotlib).

plot(df, 0, 10, color= ' red ' , thickness =5)

Study the multivariate integral
∫ 4

−4

∫ x2

0

y2 − 10x2 dy dx.

var(' x␣y␣z ')
integral(integral(y^2-10*x^2, (y, 0, x^2)), (x, -4, 4))

3-D plots are especially intriguing.

surface = plot3d(y^2-10*x^2, (x, -4, 4), (y, 0, 16))
show(surface)

Implicit plots allow for more general surfaces.

region = implicit_plot3d(y-x^2, (x, -4, 4), (y, 0, 16), (z,
0, 98), color= ' red ' , opacity =0.20)

show(surface+region)

4.2 Interactive Explorations
Interactive demonstrations are easy to create with the “interact” decorator and
modified function arguments.

@interact
def plotter(maxdegree=range (2,40)):

import sage.plot.colors
colors = sage.plot.colors.rainbow(maxdegree +1)
var(' x ')
wholeplot = plot(x^1, (x, 0, 1), color=colors [1])
for i in range(2, maxdegree +1):

newplot = plot(x^i, (x, 0, 1), color=colors[i])
wholeplot = wholeplot + newplot

show(wholeplot)

@interact
def taylor(order=slider(1, 12, 1, default=Integer (2),

label="Degree")):
var(' x ')
x0 = 0
f = sin(x)*e^(-x)

11

p = plot(f, -1, 5, thickness =2)
dot = point((x0,f(x=x0)), pointsize =80, rgbcolor =(1,0,0))
ft = f.taylor(x, x0 ,order)
pt = plot(ft, -1, 5, color= ' green ' , thickness =2)
show(dot + p + pt, ymin = -0.5, ymax = 1)

4.3 LaTeX Integration
…is superb.

latex(integrate(sec(x), x))

A = random_matrix(QQ, 6, num_bound=9, den_bound =9)
latex(A)

Now switch display mode to LATEX.

%display latex

A = random_matrix(QQ, 6, num_bound=9, den_bound =9)
A

And back to plain text.

%display plain

P = graphs.PetersenGraph ()
P.set_latex_options(vertex_shape= ' diamond ' ,

vertex_color= ' red ' , vertex_label_color= ' gold ' ,
edge_color= ' blue ')

Cut and paste a LATEX representation into your research article.

latex(P)

New Markdown cells also allow HTML and LATEX.We can add text to our
notebooks using TeX syntax and dollar signs. Previous multivariate integral:
\int_0^4\int_0^{x^2}y^2-10x^2\,dy\,dx

Can embed images this way also.

4.4 Help, Doctests, Source Code
A huge number of examples are provided for (a) learning to use Sage com-
mands, and (b) to test Sage commands. We call these “doctests.”

M = matrix(QQ, [[1, -2, 2], [-4, 5, 6], [1, 2, 4]])
M

Illustrate tab-completion (rational form), help (doctests, zig-zag form), source
code.

M.

12

4.5 Cython
A Sage-inspired project to convert Python to C, then compile.

Factorial, Python-style.

def py_fact(n):
fact = 1
for i in range(n):

fact = fact*(i+1)
return fact

py_fact (12)

timeit(' py_fact (12) ')

Cython-style. (cdef, long in header)

%% cython
def cy_fact(n):

cdef:
long fact , i

fact = 1
for i in range(n):

fact = fact*(i+1)
return fact

cy_fact (12)

timeit(' cy_fact (12) ')

4.6 Sage Single Cell Server
See HTML version of this presentation.

5 Symbolic Manipulation and Plotting Discretely
You need to declare symbolic variables (except x comes pre-defined). That
done, summations simplify as expected.

var('i,␣n ')
expr = sum(i^2, i, 0, n)
expr

We’ll recognize this result if we factor.

expr.factor ()

Arbitrarily complicated polynomials as summands can be simplified.

var('i,␣n ')
expr = sum (2*i^5 - 6*i^4 +7*i^2 - 8, i, 0, n)
expr

We can convert this symbolic expression to a callable function.

var(' t ')
g(t) = expr.subs(n=t)
g

13

And call it—thus making n concrete.

g(10)

Straightforward to plot a discrete function, we will plot using an expression.

var('i,␣n ')
expr = sum (2*i^3 - 12*i^2, i, 0, n)
points = [(k, expr.subs(n=k)) for k in range (10)]
list_plot(points)

Again, but with options.

list_plot(points , size =200, color= ' purple ')

list_plot(points , color= ' red ' , plotjoined=True)

6 Hacking on Sage
DEMONSTRATION: Modifying Sage source code.

• Location of catalan_number() (bottom of source with ?? query)

• Edit: SAGE_ROOT/src/sage/combinat/combinat.py

• Change: add print "Hello, AIMS!" to def catalan_number():

• Rebuild: ./sage -b at SAGE_ROOT

• Run: ./sage at SAGE_ROOT

• Test: ./sage -t SAGE_ROOT/src/sage/combinat/combinat.py

This worksheet available at: buzzard.ups.edu/talks.html

14

http://buzzard.ups.edu/talks.html

	What is Sage?
	Basic Combinatorial Numbers
	Binomial Coefficients
	Catalan Numbers
	Bell Numbers
	Stirling Numbers

	(Some) Areas of Discrete Mathematics
	Graph Theory
	Group Theory
	Put Them Together: Tower of Hanoi
	Linear Algebra
	Exact Linear Algebra
	Numerical Linear Algebra
	Image Compression

	Simple Number Theory
	Linear Recurrence Relations
	Perrin's Sequence
	Decompose with Partial Fractions
	Using SymPy

	Sage Environs
	(Some) Indiscreet Mathematics
	Interactive Explorations
	LaTeX Integration
	Help, Doctests, Source Code
	Cython
	Sage Single Cell Server

	Symbolic Manipulation and Plotting Discretely
	Hacking on Sage

