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1 What is Sage?

• An open source system for advanced mathematics.

• An open source mathematics distribution (like Linux) with Python as
the glue.

• A tool for learning and teaching mathematics.

• A tool for mathematics research.

Mission Statement Create a viable free open source
alternative to Magma, Maple, Mathematica, and Mat-
lab.

• Created in 2005 by William Stein.

• Free and open, GPL license.

• Includes about 100 open source packages.

• Installed: 53,230 files, 15,278,715 lines of code (v 8.1).

• Now has around 540,000 lines of new code, by several hundred mathematician-
programmers.



Some of the 100 packages included:
• Groups, Algorithms, Programming (GAP) - group theory

• PARI - rings, finite fields, field extensions

• Singular - commutative algebra

• SciPy/NumPy - scientific computing, numerical linear algebra

• Integer Matrix Library (IML) - integer, rational matrices

• CVXOPT - linear programming, optimization

• NetworkX - graph theory

• Pynac - symbolic manipulation

• Maxima - calculus, differential equations

2 Basic Combinatorial Numbers
2.1 Binomial Coefficients
The number of 3-sets chosen from a 10-set,

(
10
3

)
.

binomial (10, 3)

The coefficients of an expansion of (a+ b)n.
var( 'a,␣b ' )
expr = (a+b)^10
expr.expand ()

All of the coefficients.
bc = binomial_coefficients (10)
bc

A Python dictionary, indexed by powers of the two variables in the expansion.
bc[(3, 7)]

Tote up all of these binomial coefficients, to get 210. (Size of the power set, or
the result of setting a = 1 and b = 1).
sum(bc.values ())

Actual subsets of size 3 from a 10-set; one way to understand a binomial
coefficient.
S = list("AIMS -WOMEN")
S

sub = Subsets(S, 3)
sub

sub is a “generator”. We can list the possibilities.
sub.list()

We can iterate over sub.
for three in sub:

print three
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2.2 Catalan Numbers

catalan_number (8)

Cn = 1
n+1

(
2n
n

)
= (2n)!

(n+1)!n!

(1/9)*binomial (16, 8)

2.3 Bell Numbers
In honor of Eric Temple Bell.
bell_number (6)

Number of partitions of a set into disjoint non-empty sets.
S = list( ' MATHS ' )
part = SetPartitions(S)
part

part.list()

That’s hard to read.
part [34]

len(part)

A double-check.
part.cardinality ()

2.4 Stirling Numbers
Stirling numbers come in two flavors, “first” and “second”, or “cycle” and
“subset”. We’ll demonstrate the first.
stirling_number1 (6, 3)

The number of permutations on n symbols (in cycle notation) having exactly
k cycles,

{
n
k

}
.

perm = Permutations (6)
a = perm [134]
a

In cycle notation.
a.cycle_string ()

Now we get the trivial cycles. List length is what we want.
a.cycle_tuples ()

Collect all permutations with 3 cycles.
three = [p for p in perm if len(p.cycle_tuples ())==3]
three

How many?
len(three)
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3 (Some) Areas of Discrete Mathematics
3.1 Graph Theory
Create graphs in a natural way:

harary = Graph ([(0 ,1), (1,2), (2,3), (3,0), (1,3)])
harary

harary.plot()

harary.num_verts (), harary.num_edges ()

harary.is_planar ()

H = harary.hamiltonian_cycle ()
H.plot()

harary.degree_sequence ()

sorted(harary.degree_sequence ())

There are many pre-defined graphs (digraphs, too):

graphs.

Constant time generation of free trees, by B. Richmond, A. Odlyzko, B.D.
McKay

trees_iterator = graphs.trees (8)
T8 = list(trees_iterator)
T8

From a path to a star:

[tree.diameter () for tree in T8]

Visually:

graphs_list.show_graphs(T8)

3.2 Group Theory
Prototypical use of Sage: permutation groups. Built from the mature open
source package GAP (Groups, Algorithms, Programming).

G = DihedralGroup (8)
G

G.list()

G.is_abelian ()

sg = G.subgroups ()
[H.order() for H in sg]
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H = sg[14]
H.list()

H.is_normal(G)

3.3 Put Them Together: Tower of Hanoi

• graphs.HanoiTowerGraph(n, d)

• Generalize to n pegs and d disks

• State graph: intermediate configurations, edges are “one move”

• Labels: d-tuple, large disk to small disk; entries are peg numbers

• Example: n = 3, d = 4: (2, 0, 2, 1)

T = graphs.HanoiTowerGraph (3, 4, positions=True)
T.show(figsize =12)

A solution is path between states “all the disks on one peg” and “all the disks
on another peg.”

solution=T.shortest_path ((0,0,0,0), (1,1,1,1))
solution

Minimum number of moves:

len(solution) - 1

T.diameter ()

More general:

T = graphs.HanoiTowerGraph (4, 3, positions=True)
T.show(figsize =12)

T = graphs.HanoiTowerGraph (4, 4, labels=False ,
positions=True)

T.show(figsize =12)

Forget about graphics, work with graph itself.
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T = graphs.HanoiTowerGraph (4, 8, labels=False ,
positions=False)

T.num_verts ()

Code vertices to integers: d-tuples, base n. All disks on peg 0, move to all
disks on peg 3.

solution = T.shortest_path (0, 4^8-1)
solution

len(solution)-1

Theorem: automorphisms of the state graph are just the obvious ones (renum-
ber pegs)

T = graphs.HanoiTowerGraph (4, 6, labels=False ,
positions=False)

A = T.automorphism_group ()
A.order ()

S4 = SymmetricGroup (4)
S4.is_isomorphic(A)

Automorphisms are computed via Brendan McKay’s nauty algorithm, once
re-implemented as NICE.

3.4 Linear Algebra
3.4.1 Exact Linear Algebra

Many possible fields and rings: finite fields, field extensions, algebraic numbers.
Over the integers and rationals powered by Integer Matrix Library (IML).

A = matrix(QQ,
[[1, -2, 3, 2, -1, -4, -3, 4],
[3, -2, 2, 5, 0, 6, -5, -5],
[0, -1, 2, 1, -2, -4, -1, 4],
[-3, 2, -1, -1, -6, -3, 5, 3],
[3, -4, 4, 0, 7, -7, -7, 6]])
A

A.rref()

b = vector(QQ, [2, -1, 3, 4, -3])
A.solve_right(b)

And it is fast. 1000× 1000 matrix with single digit integer entries.

A = random_matrix(ZZ, 1000, 1000, x=-9, y=9)
%time A.determinant ()

We can combine linear algebra with graph theory (aka “algebraic graph the-
ory”).

K = graphs.KneserGraph (8,3)
K.plot()
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adj = K.adjacency_matrix ()
adj

K.spectrum ()

A small “singular graph.” (I. Sciriha, 2007)

S = graphs.CycleGraph (4)
S.add_vertices ([4, 5, 6])
S.add_edges ([(2 ,4), (2,5), (2,6)])
S.add_edges ([(3 ,4), (3,5), (3,6)])
S.plot()

adj = S.adjacency_matrix ()
ker = adj.kernel ()
ker

Notice this is the kernel over the integers, and is computed as a module. It is
easy to upgrade to the rationals.

adjQ = adj.change_ring(QQ)
kerQ = adjQ.kernel ()
kerQ

A matrix kernel (null space) is a vector space, and has all the attendant prop-
erties.

kerQ.dimension ()

kerQ.basis ()

3.4.2 Numerical Linear Algebra

Numerical linear algebra is supplied by SciPy, through to LAPACK, ATLAS,
BLAS.

A matrix of double-floating point real numbers (RDF).

B = matrix(RDF ,
[[0.4706 , 0.3436 , 0.7156 , 0.1706 , 0.3863 , 0.222, -0.9673],
[0.9433 , -0.7333, -0.2906, -0.5203, 0.3548 , 0.7577 , 0.3936] ,
[-0.8998 , 0.9269 , -0.9646, -0.2294, -0.8171, 0.4568 , 0.5949] ,
[0.8814 , 0.89, -0.2059, 0.7434 , -0.1642, 0.6918 , 0.7113] ,
[-0.0034 , -0.9842, 0.7213 , -0.7196, -0.7422, 0.3335 , 0.5829] ,
[-0.5676 , 0.6433 , -0.2296, 0.2681 , 0.2992 , 0.6988 , 0.3332] ,
[0.0366 , -0.5788, 0.5882 , 0.1559 , -0.6434, 0.871, -0.6518]])
B

And the QR decomposition of B.

Q, R = B.QR()
Q

(Q.conjugate_transpose ()*Q).round (4)

R.round (4)

(Q*R-B).round (4)
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3.4.3 Image Compression

import pylab
A_image = pylab.mean(pylab.imread( ' images/mystery.png ' ), 2)
@interact
def svd_image(i=(1 ,(1..194)), display_axes=True):

u,s,v = pylab.linalg.svd(A_image)
A = sum(s[j]*pylab.outer(u[0:,j], v[j,0:]) for j in

range(i))
# g =

graphics_array ([ matrix_plot(A),matrix_plot(A_image)])
show(matrix_plot(A), axes=display_axes , figsize =(6,8))
html( ' <h2>Compressed␣using␣%s␣singular␣values </h2> ' %i)

3.5 Simple Number Theory
Sage was born of necessity to do number theory.

p = next_prime (10^25)
q = next_prime (10^25+5*10^24+10^12)
m = p*q
print p, ' ␣x␣ ' , q, ' = '

print m

Factor 50-digit number (~166 bits).

m.factor ()

Euler ϕ function. (“totient” function.)

euler_phi (100)

Integers less than 100 and relatively prime to 100. (Note the srange function
to generate Sage integers.)

relp = [x for x in srange (100) if gcd(x, 100) == 1]
relp

len(relp)

Fact:
∑
d|n

ϕ(d) = n

Proof: Group the fractions, i

n
, 0 ≤ i ≤ n−1, by denominators once written

in reduced terms.

n = 100
sum([ euler_phi(d) for d in divisors(n)]) == n

3.6 Linear Recurrence Relations
Numbers of certain objects can sometimes be counted by recurrence relations.
We would like closed-form expressions for terms of sequences defined this way.
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3.6.1 Perrin’s Sequence

Perrin Sequence:
p(0) = 3; p(1) = 0; p(2) = 2
p(n) = p(n− 2) + p(n− 3)
Looks like the Fibonacci sequence, but “skips back” two terms, not one.
Compute by hand: 3, 0, 2, 3, 2, 5, 5, 7, 10, 12, 17, . . .
This is in Sloane’s Online Encyclopedia of Integer Sequences as sequence

number A001608.
A brute-force approach with a Python function. Impractical above about

n = 60.

def perrin(n):
if n == 0:

return 3
elif n == 1:

return 0
elif n == 2:

return 2
else:

return perrin(n-2) + perrin(n-3)

perrin (10)

perrin (20)

perrin (23).factor ()

Fact: If q is prime, then q divides p(q).
(First composite number that behaves this way is 5212.)

Generating function: f(x) =

∞∑
i=0

pi x
i

Theory gives easy computation for Perrin sequence, denominator comes
from recurrence relation, numerator is simple polynomial multiplication.

f(x) =
3− x2

1− x2 − x3
.

We can expand f as a Taylor series.

var( ' x ' )
f=(3-x^2)/(1-x^2-x^3)
f

series = f.taylor(x, 0, 20)
series

[series.coefficient(x, i) for i in range (20)]

3.6.2 Decompose with Partial Fractions

Partial Fractions can simplify a rational generating function. New, three-term
recurrence.

a(0) = 7; a(1) = 41; a(2) = 204
a(n) = 7a(n− 1)− 12a(n− 2) + 10a(n− 3)
Generating function—the rational function:
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h = (x^2 - 8*x + 7)/(1 - 7*x + 12*x^2 -10*x^3)
h

Check a(3), first new term of the sequence:

7*204 -12*41 + 10*7

h.taylor(x, 0, 3)

Create partial fraction decomposition and examine the pieces:

h.partial_fraction ()

denom1 = 1/(2*x^2 - 2*x + 1)
denom1.taylor(x, 0, 30)

denom2 = 1/(5*x - 1)
denom2.taylor(x, 0, 8)

3.6.3 Using SymPy

SymPy is a pure Python package included in Sage, but not integrated with
Sage.

docs.sympy.org/dev/modules/solvers/solvers.html#recurrence-equtions
(sic)

Import pieces of the SymPy library.

from sympy import Function , rsolve
from sympy.abc import n
y = Function( ' y ' )

Define the recurrence as an expression in y(·) that equals zero.

k = y(n+3)- 7*y(n+2) + 12*y(n+1) - 10*y(n)

And solve:

rsolve(k, y(n))

rsolve(k, y(n), {y(0):7, y(1):41, y(2) :204})

4 Sage Environs
Sage ships with a Jupyter notebook server, which is a web application that
provides a convenient interface to Sage commands, components and features.

Much of this section will only behave properly within a Jupyter
Notebook server using a Sage kernel. However some portions are trans-
ferable to command-line use or via the Sage Cell Server.
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4.1 (Some) Indiscreet Mathematics
A symbolic derivative (from Maxima).

f(x) = x^3*e^-x
df = f.derivative ()
df

Derivative of a function is again a function, and can be evaluated.

slope = df(4)
slope

Arbitrary precision numerical values on request (from MPmath).

N(slope , digits =20)

Can display plots in the notebook (via matplotlib).

plot(df, 0, 10, color= ' red ' , thickness =5)

Study the multivariate integral
∫ 4

−4

∫ x2

0

y2 − 10x2 dy dx.

var( ' x␣y␣z ' )
integral(integral(y^2-10*x^2, (y, 0, x^2)), (x, -4, 4))

3-D plots are especially intriguing.

surface = plot3d(y^2-10*x^2, (x, -4, 4), (y, 0, 16))
show(surface)

Implicit plots allow for more general surfaces.

region = implicit_plot3d(y-x^2, (x, -4, 4), (y, 0, 16), (z,
0, 98), color= ' red ' , opacity =0.20)

show(surface+region)

4.2 Interactive Explorations
Interactive demonstrations are easy to create with the “interact” decorator and
modified function arguments.

@interact
def plotter(maxdegree=range (2,40)):

import sage.plot.colors
colors = sage.plot.colors.rainbow(maxdegree +1)
var( ' x ' )
wholeplot = plot(x^1, (x, 0, 1), color=colors [1])
for i in range(2, maxdegree +1):

newplot = plot(x^i, (x, 0, 1), color=colors[i])
wholeplot = wholeplot + newplot

show(wholeplot)

@interact
def taylor(order=slider(1, 12, 1, default=Integer (2),

label="Degree")):
var( ' x ' )
x0 = 0
f = sin(x)*e^(-x)
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p = plot(f, -1, 5, thickness =2)
dot = point((x0,f(x=x0)), pointsize =80, rgbcolor =(1,0,0))
ft = f.taylor(x, x0 ,order)
pt = plot(ft, -1, 5, color= ' green ' , thickness =2)
show(dot + p + pt, ymin = -0.5, ymax = 1)

4.3 LaTeX Integration
…is superb.

latex(integrate(sec(x), x))

A = random_matrix(QQ, 6, num_bound=9, den_bound =9)
latex(A)

Now switch display mode to LATEX.

%display latex

A = random_matrix(QQ, 6, num_bound=9, den_bound =9)
A

And back to plain text.

%display plain

P = graphs.PetersenGraph ()
P.set_latex_options(vertex_shape= ' diamond ' ,

vertex_color= ' red ' , vertex_label_color= ' gold ' ,
edge_color= ' blue ' )

Cut and paste a LATEX representation into your research article.

latex(P)

New Markdown cells also allow HTML and LATEX.We can add text to our
notebooks using TeX syntax and dollar signs. Previous multivariate integral:
\int_0^4\int_0^{x^2}y^2-10x^2\,dy\,dx

Can embed images this way also.

4.4 Help, Doctests, Source Code
A huge number of examples are provided for (a) learning to use Sage com-
mands, and (b) to test Sage commands. We call these “doctests.”

M = matrix(QQ, [[1, -2, 2], [-4, 5, 6], [1, 2, 4]])
M

Illustrate tab-completion (rational form), help (doctests, zig-zag form), source
code.

M.
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4.5 Cython
A Sage-inspired project to convert Python to C, then compile.

Factorial, Python-style.

def py_fact(n):
fact = 1
for i in range(n):

fact = fact*(i+1)
return fact

py_fact (12)

timeit( ' py_fact (12) ' )

Cython-style. (cdef, long in header)

%% cython
def cy_fact(n):

cdef:
long fact , i

fact = 1
for i in range(n):

fact = fact*(i+1)
return fact

cy_fact (12)

timeit( ' cy_fact (12) ' )

4.6 Sage Single Cell Server
See HTML version of this presentation.

5 Symbolic Manipulation and Plotting Discretely
You need to declare symbolic variables (except x comes pre-defined). That
done, summations simplify as expected.

var( 'i,␣n ' )
expr = sum(i^2, i, 0, n)
expr

We’ll recognize this result if we factor.

expr.factor ()

Arbitrarily complicated polynomials as summands can be simplified.

var( 'i,␣n ' )
expr = sum (2*i^5 - 6*i^4 +7*i^2 - 8, i, 0, n)
expr

We can convert this symbolic expression to a callable function.

var( ' t ' )
g(t) = expr.subs(n=t)
g
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And call it—thus making n concrete.

g(10)

Straightforward to plot a discrete function, we will plot using an expression.

var( 'i,␣n ' )
expr = sum (2*i^3 - 12*i^2, i, 0, n)
points = [(k, expr.subs(n=k)) for k in range (10)]
list_plot(points)

Again, but with options.

list_plot(points , size =200, color= ' purple ' )

list_plot(points , color= ' red ' , plotjoined=True)

6 Hacking on Sage
DEMONSTRATION: Modifying Sage source code.

• Location of catalan_number() (bottom of source with ?? query)

• Edit: SAGE_ROOT/src/sage/combinat/combinat.py

• Change: add print "Hello, AIMS!" to def catalan_number():

• Rebuild: ./sage -b at SAGE_ROOT

• Run: ./sage at SAGE_ROOT

• Test: ./sage -t SAGE_ROOT/src/sage/combinat/combinat.py

This worksheet available at: buzzard.ups.edu/talks.html
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